Table of Contents

2008–2009 Academic Calendar 2
Mission 3
A Brief History of The Cooper Union 4

General Information 5
Programs 5
Facilities and Resources 5
Application and Admission Information 8
General Regulations 15
A Code of Fair Practice 19
Fees and Expenses 23
Financial Aid 24
Scholarships, Fellowships, Awards and Prizes 27

Irwin S. Chanin School of Architecture 30
Mission 30
Bachelor of Architecture Curriculum 31
Academic Standards and Regulations 32
Master of Architecture II Curriculum 35
Academic Integrity 37
Facilities 38
Courses 39
Faculty 42

The School of Art 43
Mission 43
Bachelor of Fine Arts Curriculum 44
Academic Standards and Regulations 47
Facilities 50
Courses 52
Faculty 59

Albert Nerken School of Engineering 61
Mission 61
Overview 62
Facilities and Research 63
Bachelor of Engineering Curriculum 65
Academic Standards 67
Grades of Record 68
Master of Engineering Curriculum 70
Course Designation 71
Departments and Programs 71
Course Renumbering 87
Courses 88
Faculty 110
Engineering Advisory Council 113

Faculty of Humanities and Social Sciences 114
Objectives & Curriculum 114
Academic Regulations 114
General Requirements 114
Courses 116
Faculty 124
Trustees, Faculty, Officers, Administration, Emeriti 126
Notice of Nondiscriminatory Policy 128
Index 133

Application
• Students live, work and study in a world city that provides an urban laboratory unparalleled in its stimulation and opportunities for research, as well as unique social and cultural institutions.

• New York City has some of the world’s greatest museum collections.

• Performances by world-class orchestras, chamber music groups, jazz musicians and dance companies occur at least once a week.

• As an international art center, New York City offers constant exposure to the work of artists from all over the world in the galleries of SoHo, Greenwich Village, and upper Manhattan.

• The curricula and public programs of nearby colleges and universities, as well as in our own Great Hall, expose our students to many ways of learning.
2008–09 Academic Calendar and Holiday Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 26 Tuesday</td>
<td>Move–in day for Residence Hall</td>
</tr>
<tr>
<td>August 26–28 Tuesday–Thursday</td>
<td>New student orientation</td>
</tr>
<tr>
<td>September 1 Monday</td>
<td>Labor Day (Staff Holiday)</td>
</tr>
<tr>
<td>September 2 Tuesday</td>
<td>Fall semester classes begin.</td>
</tr>
<tr>
<td>September 12 Friday</td>
<td>There will be a $25 fee for dropping classes after this date</td>
</tr>
<tr>
<td>September 16 Tuesday</td>
<td>Fall Festival</td>
</tr>
<tr>
<td>October 13 Monday</td>
<td>Fall Breather (no classes held); Administrative Offices remain open</td>
</tr>
<tr>
<td>November 19–November 25 Wednesday–Tuesday</td>
<td>Registration for Spring 2009 classes</td>
</tr>
<tr>
<td>November 27–30 Thursday–Sunday</td>
<td>Thanksgiving (Staff Holiday)</td>
</tr>
<tr>
<td>December 17 Wednesday</td>
<td>NOTE: MODIFIED SCHEDULE; THURSDAY CLASSES MEET</td>
</tr>
<tr>
<td>December 18 Thursday</td>
<td>NOTE: MODIFIED SCHEDULE; FRIDAY CLASSES MEET</td>
</tr>
<tr>
<td>December 18 Thursday</td>
<td>Fall semester classes and exams end</td>
</tr>
<tr>
<td>December 19–January 19 Friday–Monday</td>
<td>Winter recess; all schools</td>
</tr>
<tr>
<td>December 24–January 4 Wednesday–Sunday</td>
<td>Staff Holiday</td>
</tr>
<tr>
<td>January 5 Monday</td>
<td>Administrative Offices reopen.</td>
</tr>
<tr>
<td>January 19 Monday</td>
<td>Martin Luther King Jr.’s birthday (Staff Holiday)</td>
</tr>
<tr>
<td>January 20 Tuesday</td>
<td>Spring semester classes begin.</td>
</tr>
<tr>
<td>January 30 Friday</td>
<td>There will be a $25 fee for dropping classes after this date</td>
</tr>
<tr>
<td>February 13–16 Friday–Monday</td>
<td>Founder’s Day/President’s Day (Staff Holiday)</td>
</tr>
<tr>
<td>March 14–22 Saturday–Sunday</td>
<td>Spring recess (administrative offices remain open)</td>
</tr>
<tr>
<td>April 14–17 Tuesday–Friday</td>
<td>Registration for Fall 2009 classes</td>
</tr>
<tr>
<td>May 6–13 Wednesday–Wednesday</td>
<td>Last week of spring semester classes</td>
</tr>
<tr>
<td>May 13 Wednesday</td>
<td>Spring semester classes and exams end.</td>
</tr>
<tr>
<td>May 13 Wednesday</td>
<td>NOTE: MODIFIED SCHEDULE; FRIDAY CLASSES MEET</td>
</tr>
<tr>
<td>May 14 Thursday</td>
<td>(Final examinations will be given during the last week of the semester as announced by the schools.)</td>
</tr>
<tr>
<td>May 18 Monday</td>
<td>Senior grades due in the Office of Admissions and Records before 4 pm.</td>
</tr>
<tr>
<td>May 25 Monday</td>
<td>All non-senior grades are due in the Office of Admissions and Records before 4 pm.</td>
</tr>
<tr>
<td>May 25 Monday</td>
<td>Memorial Day (Staff Holiday)</td>
</tr>
<tr>
<td>May 26 Tuesday</td>
<td>Commencement rehearsal; annual student exhibition opens</td>
</tr>
<tr>
<td>May 27 Wednesday</td>
<td>Commencement</td>
</tr>
<tr>
<td>July 6 Monday</td>
<td>Independence Day (Celebrated–Staff Holiday)</td>
</tr>
</tbody>
</table>
Mission Statement

THE COOPER UNION
FOR THE ADVANCEMENT OF
SCIENCE & ART

Through outstanding academic programs in architecture, art and engineering, The Cooper Union for the Advancement of Science and Art prepares talented students to make enlightened contributions to society.

The college admits undergraduates solely on merit and awards full scholarships to all enrolled students. The institution provides close contact with a distinguished, creative faculty and fosters rigorous, humanistic learning that is enhanced by the process of design and augmented by the urban setting.

Founded in 1859 by Peter Cooper, industrialist and philanthropist, The Cooper Union offers public programs for the civic, cultural and practicable enrichment of New York City.
The Cooper Union for the Advancement of Science and Art

A BRIEF HISTORY

The Cooper Union for the Advancement of Science and Art, established in 1859, is among the nation’s oldest and most distinguished institutions of higher education.

Located in New York City’s East Village, The Cooper Union is an all honors college that provides full-tuition scholarships to all undergraduates accepted. Dedicated exclusively to preparing students for the professions of architecture, art and engineering, Cooper Union has an enrollment of approximately 1,000 undergraduate students, all accepted on merit alone, and was the first college to forbid discrimination based on race, ethnicity or gender. Under the leadership of President George Campbell Jr., the rigor of its three professional schools—the Irwin S. Chanin School of Architecture, the School of Art and the Albert Nerken School of Engineering—has made Cooper Union one of the most selective colleges in the nation.

Peter Cooper was a workingman’s son who had less than a year of formal schooling. Yet he went on to become an industrialist and an inventor; it was Peter Cooper who designed and built America’s first steam railroad engine. Cooper made his fortune with a glue factory and an iron foundry. Later, he turned his entrepreneurial skills to successful ventures in real estate, insurance, railroads and telegraphy. Once, he even ran for president.

In the late 1850s, when Cooper was a principal investor and first president of the New York, Newfoundland & London Telegraph Co., the firm undertook one of the 19th century’s monumental technical enterprises—laying the first Atlantic cable. Cooper also invented Jello—with help from his wife, Sarah, who added fruit to his clarified gelatin.

If Cooper sounds like a real-life Horatio Alger, perhaps it is no surprise that three of Alger’s tales tell of young men passing Cooper Union’s stately Foundation Building and, duly inspired, deciding immediately to lead productive and moral lives.

As a boy, Peter Cooper learned carpentry, beer brewing and hat and coach making. But he was acutely aware of his lack of “even a common education,” a deficiency that bothered him throughout his life. Though he later became one of America’s richest men, he could not spell. So, in 1800, as a nine-year-old apprentice carriage-maker in New York City, he sought a place where he could learn scientific techniques and theory to supplement his innate inventiveness and manual skill. He found no such place.

As he grew up and became one of the most successful businessmen of America’s Gilded Age, Cooper never forgot his beginnings or his lack of education. He thought children of immigrants and the working class deserved access to education. Believing that education should be “as free as water or air” and inspired by a polytechnic school in Paris, he spent the last 30 years of his life creating and nurturing a school for the “boys and girls of this city, who had no better opportunity than I.”

As one of the first colleges to offer a full-scholarship education both to men and women of working-class families, Cooper Union was a pioneer long before access to education became public policy. Cooper’s example motivated the founders of other prestigious colleges, such as Andrew Carnegie, Ezra Cornell and Matthew Vassar.

At first, Cooper Union provided night classes for men and women in the applied sciences and architectural drawing. In addition, the college’s Women’s Art School, open during the day, offered free art classes and training in the new occupations of photography, telegraphy, “type-writing” and shorthand.

Those classes—a landmark in American history and the prototype for what is now called continuing education—have evolved into three distinguished schools that make up The Cooper Union for the Advancement of Science and Art: the Irwin S. Chanin School of Architecture, the School of Art and the Albert Nerken School of Engineering.

Cooper, however, founded more than a college. From the beginning, Cooper Union also provided a public reading room and library, and a meeting place for artists and inventors. In the historic 900-seat Great Hall, the public heard social and political reformers as well as free lectures on science and government. Before they were elected, Presidents Lincoln, Grant, Cleveland, Taft and Theodore Roosevelt spoke in the celebrated auditorium. Abraham Lincoln gave his “Right Makes Might” speech from the Great Hall podium, earning him the nomination for the presidency. Woodrow Wilson and Bill Clinton as sitting presidents also spoke there. Today, the Great Hall continues as a home for public forums, cultural events and community activities.

Cooper Union is also the place where Thomas Edison and Felix Frankfurter were students, where the Red Cross and NAACP were organized, where suffragist Susan B. Anthony had her offices and where researchers developed the prototype of the microchip.

Peter Cooper’s dream was to give talented young people the one privilege he lacked—a good education. He also wanted to make possible the development of talent that otherwise would have gone undiscovered. His dream—providing an education “equal to the best”—has come true. Since 1859, the Cooper Union has educated thousands of artists, architects and engineers, many of them leaders in their fields. Today, his dream is still our mission.
The following programs at The Cooper Union have been registered by the New York State Education Department.

<table>
<thead>
<tr>
<th>Program</th>
<th>Hegis Code</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>0202</td>
<td>B.Arch.</td>
</tr>
<tr>
<td>Engineering</td>
<td>0901</td>
<td>B.S.</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>0906</td>
<td>B.E.</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>0908</td>
<td>B.E.</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>0909</td>
<td>B.E.</td>
</tr>
<tr>
<td>Interdisciplinary Engineering</td>
<td>0901</td>
<td>B.E.</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>0910</td>
<td>B.E.</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>1001</td>
<td>B.F.A.</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>5012</td>
<td>Certificate</td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>0901</td>
<td>M.E.</td>
</tr>
<tr>
<td>Master of Architecture</td>
<td>0202</td>
<td>M.Arch. II</td>
</tr>
</tbody>
</table>

Accreditation The Cooper Union is accredited by the Middle States Association of Colleges and Schools; all of the degree programs are registered with the New York State Education Department. In addition, the program leading to the degree bachelor of architecture is accredited by the National Architectural Accrediting Board, the program leading to the degree bachelor of fine arts is accredited by the National Association of Schools of Art and Design and the four programs (chemical, civil, electrical and mechanical engineering) leading to the degree bachelor of engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Baltimore, MD 21202.

The National Architectural Accrediting Board mandates that the following statement be included in catalogs: In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit U.S. professional degree programs in architecture, recognizes three types of degrees: the bachelor of architecture, the master of architecture and the doctor of architecture. A program may be granted a six-year, three-year or two-year term of accreditation, depending on the extent of its conformance with established educational standards. Master's degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree that, when earned sequentially, constitute an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The Cooper Union comprises five buildings at Manhattan’s Cooper Square, between Sixth and Ninth Streets and Third and Fourth Avenues.

At the center of this educational complex is the Foundation Building, the college’s original structure, which was built under Peter Cooper’s supervision. Housed in the building are the Great Hall, The Cooper Union’s historic auditorium; the schools of art and architecture; the library; offices of the president and the Arthur A. Houghton Jr. Gallery. The building also includes the Herb Lubalin Study Center, laboratories, classrooms, shops and studios.

The Foundation Building This building is open during the fall and spring semesters from 8 am to 2 am, Monday through Thursday; 8 am to midnight, Friday and Saturday; and noon to 2 am Sunday. Hours are often extended during high-use periods such as the last two weeks of the semester. The School of Art office is open from 8:30 am to 6 pm during the academic year. Shops, special labs, the computer studio and other facilities that require supervision are open on a more restricted basis; each facility posts its own hours. A detailed schedule is available from the School of Art office. The School of Architecture office is open Monday–Friday, 9 am–5 pm.

During the summer months, the building is open from 8 am to 6 pm, Monday through Thursday; the administrative offices are open from 9 am to 5:15 pm, Monday through Thursday; and all of the educational facilities are closed except to high school students who participate in the Saturday/Outreach Program and participants in the Summer Residency Program.

The Engineering Building Engineering classrooms, labs, shops, the college’s Computer Centers, the Office of the Dean of Engineering and Offices of the Faculty of Humanities and Social Sciences are housed in the Engineering Building.

The Engineering Building is open from 8 am to 10 pm, Monday through Saturday, during the fall and spring semesters. Students who wish to use the building facilities until midnight must secure special permission first from relevant department and then from the engineering dean’s office. Laboratories and special project areas may be accessible on a to-be-determined basis to individual students with permission. The building is open from 8 am to 5:30 pm, Monday through Thursday, during the summer months. At peak times, hours may be extended by the dean’s office.

New Academic Building Construction of Cooper Union’s new academic building (www.cooper.edu/cubuilds) has begun. Designed by Pritzker Prize–winning architect Thom Mayne, the building will be comprised of state-of-the-art laboratories, classrooms and studios along with conference rooms,
lounges, a gallery and auditorium when it is completed February 2009. This is a great moment in Cooper Union’s history and will ensure that the college, its faculty and students have 21st century facilities that are appropriate to one of the nation’s top-ranked institutions of higher education.

Long Island City Studios Until construction of the new academic building is completed, the School of Art has relocated much of its student workspace to a transitional location in Long Island City (LIC), Queens. This studio space is easily accessible by public transportation and students may also avail themselves of a car service provided by the college. This service is available on demand between the LIC studio location and the campus of The Cooper Union only. The transitional studio space is open 24 hours per day, seven days a week, except during official holidays and vacation periods. More limited hours are in effect during the winter intersession and spring break.

30 Cooper Square The Business Office, Center for Design & Typography, Office Services (mail, photocopies, supplies), and the Offices of Admissions and Records, Registrar, Student Services (financial aid, career counseling, health, recreation and safety), External Affairs, Alumni Relations, Annual Fund, Alumni Association, Development and Public Affairs are housed at 30 Cooper Square. The building is open for public service from 9 am to 5 pm, Monday through Friday. Summer hours are Monday through Thursday, 9 am to 5:15 pm.

Student Residence Located on Stuyvesant Street and Third Avenue, the Student Residence opened in 1992 and provides housing for 178 students. Three, four or five students share each two- or three-bedroom unit. Each unit contains a bathroom and kitchenette. The building contains a laundry room, the residence hall office on the third floor, a study room and the Menschel Common Room.

The Student Residence is staffed by the resident manager, assistant manager, 24-hour security guards, resident assistants and maintenance staff. The building has sprinkler, security camera and alarm systems, and access for residents is controlled by a palm scanner.

The privilege of residing in the building is generally extended only to students in their first year of study. New students receive an application at the time they are admitted to The Cooper Union. Continuing students who have a special hardship (i.e. medical or financial problems) will be considered for housing on a space available basis and should inform the resident manager of their special circumstances at the time of re-application in April.

Social programming for the building occurs in the Menschel Room with its spacious terrace, a generous gift from the Goldsmith Foundation.

Refund Policy for Student Residence A refund of housing charges resulting from an approved request to cancel the housing agreement will be made in accordance with the following schedule: 100 percent of the total housing charges for the semester if the cancelation request is made prior to August 1 for the subsequent fall semester and December 1 for the subsequent spring semester; 65 percent if made by September 30 for the fall semester and January 31 for the spring; and 35 percent if made by October 31 for the fall and February 28 (29) for the spring. No refunds will be made after these dates.

Students who are evicted from the Student Residence or whose Housing Agreements are terminated for violations of the terms of the Housing Agreement are not eligible for refunds.

Hecht Viewing Gardens Located in front of the student residence are the George Hecht Viewing Gardens, made possible by a gift from Hecht, a 1930 electrical engineering alumnus.

The Cooper Union Library’s specialized collections provide support for the academic programs at the institution’s three degree-granting schools of Art, Architecture and Engineering, as well as courses in the Humanities and Social Sciences.

Located on the main floor of the Foundation Building, the Library houses over 100,000 book and periodical volumes, subscribes to several hundred current periodicals as well as a substantial number of databases, and maintains collections that include electronic, visual and historic materials. The McGraw Electronic Resources Center provides additional access to a variety of databases and the Internet while serving as a focal point for instruction in electronic and traditional research techniques. The Library’s Web resources are accessible from any computer on campus, and to authorized users off campus.

The Visual Resources Collection is comprised of more than 65,000 digital images and slides of art and architectural works, as well as substantial picture files, films, videos, DVDs, maps and blue prints. The Cooper Archives consist of books, manuscripts, papers and photographs relating to the history of the Cooper Union, its founder Peter Cooper, and the Hewitt families.

Professional librarians are always available during library hours to assist students, faculty and staff with their information needs. The librarians also perform specialized searches and provide class instruction.

In addition, the Cooper Union Library is a member of a consortium of academic libraries that includes New York University’s Bobst Library and the libraries of the New School. Under this agreement, the libraries share a combined online catalog, and students and faculty of the Cooper Union have access and borrowing privileges at the consortium libraries. A separate agreement provides access to the Cardozo School of Law Library.
When classes are in session, Library hours are as follows:

- Monday through Thursday 8:45 am–9 pm, Friday 8:45 am–6 pm, Saturday 11 am–5 pm and Sunday 12 noon–5 pm.

The Cooper Archives (by appointment) and the Visual Resources Collection are open Monday through Friday 9 am–5 pm. When classes are not in session, the Library is open Monday through Friday, from 9 am–5 pm. Summer hours are Monday through Thursday 9 am–5 pm. The Library is closed on holidays observed by the college.

Continuing Education: Continuing Education offers a general public and the Cooper Union community a wide range of lectures, symposia, readings, performances and evening courses. These public programs comprise an effort to extend the creative and intellectual life of the college into the larger community, as well as to complement Cooper’s undergraduate offerings. Many of the programs, including courses, are free to Cooper Union students, faculty and staff.

The Great Hall: The Great Hall of The Cooper Union has stood for almost a century and a half as a bastion of free speech and a witness to the flow of American history and ideas. When the hall opened in 1858, more than a year in advance of the completion of the institution, it quickly became a mecca for all interested in serious discussion and debate of the vital issues of the day. It has continued in that role ever since.

Student Life: With fewer than 1,000 students, Cooper Union is a small community of professionals-in-training within the larger community of New York City. The intellectual ferment of New York City provides the background for students’ rigorous studies in architecture, art or engineering, and students enjoy the abundance of cafés, galleries, theaters, movie houses, restaurants, shops and clubs within walking distance. The local stations of two major subway lines provide easy access to downtown Manhattan and the outer boroughs.

The dean of students and the staff of the Office of Student Services oversee many aspects of student life outside the classroom, including student clubs and the student government, career counseling, financial aid, student health insurance, athletics and recreation and the production of the Campus Safety Report.

Life on campus is shaped by the current interests of students. The Joint Student Council has representatives from all class years in all three schools and allocates funding to student clubs through the Joint Activities Committee (JAC). Under the rules of the JAC Constitution, clubs are readily formed and as a result, new clubs emerge every year. Up to 80 clubs have flourished annually, including multiple professional organizations, a drama society, several musical groups, dance clubs, the student newspaper, a variety of ethnic and cultural groups and recreational groups. The clubs have sponsored lectures, exhibits, field trips, conferences, poetry readings, films, dinners, publications, performances, ice cream socials, international food fairs and community service work. Each year, the clubs jointly sponsor the Fall Festival where members recruit new students to join the clubs and give information about upcoming activities. Professional societies compete in national design competitions and have a stellar record of bringing home prizes.

Students at Cooper Union also participate in an extensive program of athletic and recreational activities supervised by the associate dean. There are varsity women’s and men’s volleyball teams, basketball, cross-country women’s and men’s tennis teams, soccer and ping pong teams, as well as classes in fencing, yoga, aerobics and tae kwan do. Varsity teams have won Hudson Valley Athletic Conference championships in several different sports in recent years and individual players have been voted player of the week. Cooper Union students have access to two athletic facilities very close to the school where they can enjoy these activities. Each year, several hundred students, alumni and friends go on the annual ski trips to Mont Sutton, Quebec, during the winter breaks in January and February.

New Student Orientation: New students are invited to an orientation prior to the beginning of the fall semester. This three-day program provides an opportunity for first-year students to meet each other and to get acquainted with continuing students and administrators. Sessions on campus are designed to familiarize students with the academic program and culture at Cooper Union. Mandatory sessions on academic integrity help students to understand how to prepare papers for college courses.

Services for Disabled Students: Cooper Union is an equal opportunity institution that admits students without regard to disabling conditions. Cooper Union makes reasonable accommodations to meet the needs of disabled students on campus. A variety of supplemental services can be arranged. These can include, but are not limited to, providing note takers, readers and interpreters.

Disabled students should contact the dean of students for assistance at least six weeks before the beginning of the semester.

Career Development: The Center for Career Development provides a wide range of programs and resources for students in the Schools of Architecture, Art and Engineering. The Center is dedicated to providing effective career tools that will help prepare and empower students to make a successful transition from studying with a distinguished and creative faculty to applying their knowledge and skills to a professional practice.
Career exploration at The Cooper Union is purposely integrated into the educational experience through internal and external professional-development partnerships. The Career Center provides individual career counseling to all students; this includes résumé and cover-letter critiques, behavioral mock interviews and instructions on how to best utilize the on-site Career Resource Library and web-based resources. We encourage students to review career-preparation timelines, job postings and recruiting services for internships and full-time positions, placement data, graduate-school timelines and related events, experiential-learning programs and grants, fellowships and scholarships at www.cooper.edu/career.

Cooper Union Alumni Association The Alumni Association comprises all Cooper Union graduates and students who attended the college for a minimum of one year. The Association was organized in 1936 to foster the loyalty, interest and support of those who studied at this unique institution. Each year, all members of the Association receive ballots to select the members of the Alumni Council and the Executive Board, which are the leadership bodies of the Association. Members of the Alumni Council and Executive Board serve on committees to organize events commemorating Founder’s Day, plan reunions, host young alumni events, coordinate class representatives and maintain an Alumni Association web site. The Association also supervises the annual fund, the primary source of contributions to the operating budget of The Cooper Union. Generous contributions to the annual fund by alumni, parents and others enable The Cooper Union to further Peter Cooper’s mission. Members of the alumni body provide mentoring and career insights through our CU@Lunch program, in conjunction with the Office of Career Services. The Association also recognizes outstanding seniors with the Service to School awards and presents four annual prestigious alumni awards: Alumnus of the Year, Gano Dunn, John Q. Hejduk and Augustus St. Gaudens. Through the Alumni Council, alumni are represented on various faculty committees and on the Board of Trustees. You can learn more about the Alumni Association and purchase Cooper Union merchandise by visiting our web site at www.cualumni.com or e-mail us at alumni@cooper.edu.

Application and Admission Information

The Process The admission process varies according to the school to which an applicant applies (architecture, art, engineering). First-year applicants to the Irwin S. Chanin School of Architecture submit their applications no later than January 5 of the year they plan to attend. In late January or early February, each applicant is mailed a hometest with specific instructions. The hometest contains projects that must be completed and returned to the Office of Admissions and Records within approximately 30 days. Each hometest is then reviewed by the Architecture Admissions Committee. Admission is offered to approximately 25-30 students, based on the hometest and a review of the student’s previous academic record.

First-year applicants to the School of Art submit their applications no later than January 9 of the year they plan to attend. In late January or early February, each applicant is mailed a hometest with specific instructions and a series of personal essay questions. The hometest contains projects that must be produced and returned to the Office of Admissions and Records, together with the essays and a portfolio of previous work, within approximately 30 days. Each complete record is then reviewed by a faculty committee. Final decisions are made by the Art School Admissions Committee based on all elements of the application, with substantial weight given to the hometest. Admission is offered to approximately 65 students.

First-year applicants to the Albert Nerken School of Engineering submit their applications no later than February 2 of the year they plan to attend. Once the initial application is filed, each applicant is mailed a series of questions to be answered in essay format. Academic components of an applicant’s record—the high school average, SAT I (or ACT) scores, SAT II scores in mathematics (I or II) and physics or chemistry and strength of course selection—are used in evaluating a student for admission. Essays and teacher/counselor recommendations are also considered to ensure that the admission offers reflect an accurate match between applicant and institution. Admission is offered to approximately 170 students.

For information about the SAT I or II exams, please visit www.collegeboard.org. For information about the ACT, which can be taken in lieu of the SAT I exam only, please visit www.act.org. For further information about The Cooper Union, please visit our web site at www.cooper.edu.
Application Calendar for Architecture

Submit first-year application before: January 5
Submit high school records before: February 1
Apply to the College Board
for SAT I at least one month before taking test.¹
Recommended SAT I test date before: February 1
Submit transfer application before: January 5

Application Calendar for Architecture (Graduate)

Submit application and all materials before: January 5
Apply to the College Board
for GRE at least one month before taking test.¹
Recommended GRE test date before: December 5

Application Calendar for Art

Submit first-year application before: January 9
Submit high school records before: February 1
Apply to the College Board for SAT I at least one month before taking test.¹
Recommended SAT I test date before: February 1
Submit transfer application before: January 9

Application Calendar for Engineering (Undergraduate)

Submit first-year application before: February 2
Submit high school records before: February 15
Apply to the College Board for SAT I at least one month before taking test.¹
Recommended SAT I test date before: February 2
SAT results not acceptable if older than: April 2006
Apply to the College Board for Math I or II and Physics or Chemistry SAT II Tests
at least one month before taking tests.¹
Recommended SAT II Test date before: February 2
Submit transfer application before: March 13

Application Calendar for Engineering (Graduate)

Cooper Union students should submit graduate applications before: March 1
Graduates from other colleges may submit graduate applications before: March 1

Cooper Union offers its full-tuition scholarship education to residents of the United States of America who qualify in the competition for admission, regardless of their race, religion, sex, color, age, national and ethnic origin or handicap. Graduation from an approved secondary school course covering at least 16 units or the equivalent is required of all candidates. Admission requirements and procedures are not the same for all curricula taught at Cooper Union. (See the application calendar above, and subsequent pages for details.)

The application is available to be downloaded or transmitted online at www.cooper.edu. A $65 non-refundable application fee is required when the application is filed. The admissions office is open for public service from 9 am to 4:30 pm, Monday through Friday. Information is readily available at www.cooper.edu.

General Application Procedure

Each candidate should:

1. Complete and return or electronically file an acceptable application and the $65 application fee (no cash).¹
2. Submit official high school and college records before the specified deadlines.²
3. Take all the required tests.³
4. Some students may be asked to appear for an interview, though this is not a general requirement for admission.

To be enrolled, each admitted candidate must:

1. Accept offer of admission and pay the appropriate fee.
2. Submit a final transcript before July 15.
3. File medical—including vaccination and immunization—records.
5. Register for courses.

Cooper Union has agreed with many other colleges to use May 1 prior to the fall for which admission is sought as the deadline for students who are accepting our offers of admission. This is known as the candidate’s reply date.

First-Year Application Requirements—Architecture Degree

Applications for first-year admission must be submitted before January 5.

Applicants for first-year admission in architecture will be required to complete and submit a home project. Details will be mailed to applicants in late January or early February. High school records must show graduation with a minimum of 16 units⁴ before July 15 of the year for which admission is sought, with required and elective subjects as follows:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units Required for Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
</tr>
<tr>
<td>History and Social Studies</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>3¹</td>
</tr>
<tr>
<td>Science</td>
<td>1</td>
</tr>
<tr>
<td>Other Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Units Required</td>
<td>16</td>
</tr>
</tbody>
</table>

¹ New York State residents should consult the Student Bulletin, New York State Edition (College Board), to confirm test dates.
² A waiver of application fee may be granted if the student files a written request with the application and formal documentation of need (FAFSA or W2 form).
³ See the appropriate section below to discover which high school subjects, which college records and which tests are required for the curriculum you wish to enter at Cooper Union.
⁴ A unit represents a year’s study in a subject, with classes meeting at least four times a week in a secondary school.
⁵ Including trigonometry; precalculus preferred. Students who have not demonstrated an appropriate level of mathematics achievement may be required to enroll in a preliminary math course in the summer prior to their second year, in preparation for MA 163-164 Calculus and Analytic Geometry.
Students who apply while attending high school will be expected to supply transcripts of subjects studied during the first three years of high school (Grades 9, 10 and 11). High school graduates must supply the full four-year record. High school transcripts should be sent during the fall and winter months, but no later than February 1 if supporting a freshman application. Each candidate should make certain that the high school subjects required for his/her major are completed prior to graduation since Cooper Union will not be able to verify his/her senior program until final transcripts arrive in June or July. This is too late to make up a missing required subject or to make plans for admission to another college. All freshman candidates for degrees must submit acceptable scores on the College Board Scholastic Assessment Test (SAT I or ACT). Test scores should be sent to Cooper Union (CEEB Code No. 2097). Testing later than February 1 of the year for which admission is sought is not acceptable; results must reach Cooper Union before March 1. Students who have not demonstrated an appropriate level of mathematics achievement may be required to enroll in a preliminary math course in the summer prior to their second year, in preparation for MA 163-164 Calculus and Analytic Geometry.

Recognizing that communication skills (both verbal and written) are integral to all curricula of Cooper Union, all incoming students will be required to participate in a writing workshop conducted by the Faculty of Humanities and Social Sciences during the new student orientation program. An assessment based on the outcome of this workshop may indicate that student(s) will benefit from use of the resources of the Center for Writing and Language Arts (see page 113 for more information) in order to meet the expectations of the program as well as to develop the critical analytical and communication skills that provide the foundation for creative, academic and professional success.

Applicants whose first language is not English are encouraged to submit alternative documentation of their English language proficiency. The Test of English as a Foreign Language will be taken into consideration in all admission deliberations (most admitted students score at least 250 [CBT], 100 [IBT] or 600 [paper test] on the TOEFL exam). Admission decisions will be made available in early April; candidates are expected to reply before May 1, the candidate’s reply date.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units Required for Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
</tr>
<tr>
<td>History and Social Studies</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>1</td>
</tr>
<tr>
<td>Other Electives</td>
<td>8</td>
</tr>
<tr>
<td>Total Units Required</td>
<td>16</td>
</tr>
</tbody>
</table>

Students who apply while attending high school will be expected to supply transcripts of subjects studied during the first three years of high school (Grades 9, 10 and 11). High school graduates must supply the full four-year record. High school transcripts should be sent during the fall and winter months, but no later than February 1 if supporting a freshman application. Each candidate should make certain that the high school subjects required for his/her major are completed prior to graduation since Cooper Union will not be able to verify his/her senior program until final transcripts arrive in June or July. This is too late to make up a missing required subject or to make plans for admission to another college. All first-year candidates for degrees must submit acceptable scores on the College Board Scholastic Assessment Test (SAT I or ACT). Test scores should be sent to Cooper Union (CEEB College Code No. 2097). Testing later than February 1 of the year for which admission is sought is not acceptable; results must reach Cooper Union before March 1. Applicants whose first language is not English are encouraged to submit alternative documentation of their English language proficiency. The Test of English as a Foreign Language will be taken into consideration in all admission deliberations (most admitted students score at least 250 [CBT], 100 [IBT] or 600 [paper test] on the TOEFL exam). Admission decisions will be made available in early April; candidates are expected to reply before May 1, the candidate’s reply date.

* A unit represents a year’s study in a subject, with classes meeting at least four times a week in a secondary school.
First-Year Application Requirements—Engineering (Undergraduate)

Candidates should file their applications before February 2 of the year for which admission is sought and their official high school transcripts before February 15.

High school records must show the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units Required for Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
</tr>
<tr>
<td>History and Social Studies</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>4(^7)</td>
</tr>
<tr>
<td>Physics</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td>5–7</td>
</tr>
</tbody>
</table>

Total Units Required

17 minimum
19 recommended

Students in high school will be expected to supply transcripts covering subjects taken during the first three years of high school (Grades 9, 10, and 11). High school graduates must supply the full four-year record. High school transcripts should be sent during the fall and winter months, but no later than February 15 if supporting a freshman application.

Each candidate should make certain that the high school subjects required for admission are completed prior to graduation since Cooper Union will not be able to verify his/her senior program until final transcripts arrive in June or July. This is too late to make up a missing required subject or to make plans for admission to another college. In the area of mathematics, candidates may offer somewhat different patterns of preparation provided they will be ready for the intensive study of calculus at college. Preparation beyond the listed minimum in mathematics is highly recommended. College Board Advanced Placement Mathematics are suitable courses for such further preparation.

All engineering candidates must send to Cooper Union (College Board Code No. 2097) results of the SAT I or ACT and of the SAT II in physics or chemistry and in either Level I or Level II mathematics. Applications for the SAT I and II should be filed with the College Board in Princeton, NJ, at least one month before the testing dates. Testing later than February 1 of the year for which admission is sought is not acceptable; results must reach Cooper Union before March 1. Results of an SAT or ACT taken before April 2006 will not be accepted. Applicants whose first language is not English are encouraged to submit alternative documentation of their English language proficiency. The Test of English as a Foreign Language will be taken into consideration in all admission deliberations (most admitted students score at least 250 [CBT], 100 [IBT] or 600 [paper test] on the TOEFL exam). Admission decisions will be made in early April; candidates are expected to reply before May 1, the candidate’s reply date.

\(^7\) Including calculus.
First-Year Profile–Fall 2007 In 2007, Cooper Union received 2,551 first-year applications; 274 students were admitted (11 percent) and 203 of those students accepted our offer (74 percent). The School of Architecture received 578 applications; 23 students were admitted (four percent) and 21 of those accepted our offer (91 percent). The School of Art received 1,143 applications; 67 students were admitted (6 percent) and 61 of those students accepted our offer (91 percent). The School of Engineering received 830 applications; 184 students were admitted (22 percent) and 121 of those students accepted our offer (66 percent).

Geographically, 38 percent of the first-year architecture students lived in New York State; 25 percent of the first-year art students lived in New York State; and 69 percent of the first-year engineering students lived in New York State. In all, 52 percent of all Cooper Union first-year students came from New York State.

Twenty-six percent of all Cooper Union first-year students are Asian; 22 percent are African American, Caribbean or Latino; one percent are Native American; nine percent are international students; and 38 percent are Caucasian, non-Latino. Thirty-five percent of all Cooper Union first-year students are women.

Please Note: SAT or ACT scores do not significantly enter the decision-making process of the School of Art but are important ingredients of the architecture and engineering admissions criteria.

The middle 50 percent of the architecture freshmen scored a high school average between 88 and 96 and SATs between 1170 and 1370. The middle 50 percent of the art freshmen scored a high school average between 89 and 96 and SATs between 1150 and 1330. The middle 50 percent of the engineering freshmen scored a high school average between 94 and 99 and SATs between 1350 and 1490.

Retention and Graduation Rate Ninety-three percent of the fall 2006 School of Architecture first-year students returned for fall 2007 and 87 percent of first-year students entering the School of Architecture in fall 2001 graduated within six years. Architecture students are encouraged to expand their professional options with outside experience (foreign or domestic) for at least one year during their course of study at Cooper Union. Ninety-five percent of the fall 2006 School of Art first-year students returned for the fall 2007 and 85 percent of first-year students entering the School of Art in fall 2002 graduated within five years. Ninety-four percent of the fall 2006 School of Engineering first-year students returned for fall 2007 and 85 percent of first-year students entering the School of Engineering in fall 2002 graduated within five years.

Transfer Application Requirements—Architecture Transfer applicants for the architecture program are those who will have completed elsewhere at least one year of an accredited architecture program by June.

Other individuals may be eligible to apply through the transfer application if they can submit a portfolio of their creative work. This includes individuals who have or will have by June a bachelor’s degree or the equivalent in a discipline other than architecture or those who have begun studies in a discipline related to architecture. Transfer applicants must apply before January 5 for September classes. The admission decisions and the levels of entry for transfer students will be based upon a review of college record and of portfolio work. Special instructions concerning the content and form of transfer portfolios are mailed to applicants in late January or early February, to be returned to us by the posted date. All transfer applicants must submit official transcripts of previous educational experiences (high school and college and prior SAT or ACT scores).

If admitted, transfer students are offered admission into a particular year of the five-year design sequence. This decision is final and acceptance of the offer of admission represents agreement on the part of the admitted student with this decision. It will be necessary for the matriculating transfer student to successfully complete the design studio to which he/she is admitted, as well as all subsequent studios, as part of their degree requirements. The official academic transcript of a transfer student will be reviewed prior to the student’s first registration. This review will determine what, if any, additional coursework may be eligible for transfer credit. (See page 33 for more information on transfer credit evaluation by the School of Architecture.)

The Master of Architecture II program is open to applicants who:
• hold the degree of bachelor of architecture (B.Arch.), the master of architecture I (M.Arch. I) or an equivalent degree from an international institution
• have completed a minimum of one year of work experience after obtaining their first professional degree.

All applicants must submit the following:
• A completed application form
• Application fee of $65
• Official academic records (transcripts) from all colleges and universities from which you have received credit
• Recent GRE scores and/or TOEFL scores
• Recommendation letters (three are required)
• Resume/CV
• Written essay: The essay should succinctly explain your interest in the M.Arch. II program as well as the specified area of concentration
• Examples of written work
• Portfolio: Applicants must submit a portfolio that includes their most important and representative design and written work. The portfolio should consist of professional, academic and/or scholarly work. It should be bound into a brochure no larger than 9” x 12” (overall size). Applicant should not submit CDs, slides, loose sheets or original drawings. Simple packaging is preferred.
• Potential candidates will be required to be available and make necessary arrangements for a personal interview. Interview expenses will be the responsibility of the candidate.

Transfer Application Requirements—Art Transfer applicants for the art degree or certificate programs are those who will have completed between 18 and 60 credits of college studio art classes by the time they enroll at Cooper Union.

All other applicants are freshman candidates. Transfer applicants must apply before January 9 for classes beginning in September. The admission decisions for transfer students will be based upon a review of prior college record and of portfolio work, including the hometest. Special instructions concerning content and form of transfer portfolios are mailed to applicants in late January or early February, to be returned to us by the posted date. Transfer applicants must not have completed more than 60 studio credits at another institution. (See also page 47.) All transfer applicants must submit official transcripts of previous educational experiences (high school and college and prior SAT or ACT scores). An accepted applicant who has previously earned a baccalaureate degree in a discipline other than art will be treated as a transfer student for purposes of evaluating completion of degree requirements and length of time allotted at Cooper Union to complete the B.F.A.

Transfer Application Requirements—Engineering Transfer applications should be submitted before March 13 of the year for which admission is sought. It may be necessary to wait until late May, when the available space may be predicted accurately, before receiving notification of the admission decision. Transfer applicants must have completed all of Cooper Union’s first-year program at another accredited college. If space is available, they are admitted on the basis of prior college records. All transfer applicants must submit official transcripts of previous educational experiences (high school and college and prior SAT or ACT scores).

Master of Engineering Application Requirements Students are accepted on an academically competitive basis subject to the availability of an adviser and of suitable facilities for the proposed thesis research. To be admitted to the program, a student should have completed an engineering baccalaureate program that is accredited by the Accreditation Board for Engineering and Technology (ABET). Current Cooper Union engineering students do not have to pay an application fee.

Cooper Union Undergraduates must have a minimum 3.0 grade point average in the major upon graduation. Consult the department chairman regarding specific departmental requirements. Generally, students entering Cooper Union undergraduate programs as freshmen require five years to complete the master of engineering.

Graduates from Other Colleges Depending on the availability of faculty and facilities, the engineering departments may be able to admit a few outstanding students into their master’s degree programs from outside Cooper Union. To be considered for admission, a student should have completed an engineering baccalaureate program that is accredited by the Accreditation Board for Engineering and Technology (ABET). Applicants must submit official transcripts. Graduates of foreign institutions whose native language is not English are required to submit scores of the Test of English as a Foreign Language (TOEFL). Admitted students may be required to take advanced undergraduate courses to make up any deficiencies in their preparation. Specific admission requirements may be waived upon recommendation of the faculty in the area of the student’s major interest.

All application forms must be submitted to the Office of Admissions and Records by March 1. The application form is available to be downloaded at www.cooper.edu.

All application forms must be submitted to the Office of Admissions and Records by December 1 (for Cooper Union students) or May 1 (for graduates from other colleges). A downloadable application and the ability to apply electronically are available at www.cooper.edu.

College Boards All candidates for first-year admission to the Cooper Union’s undergraduate degree programs and for the certificate program in art are required to take the Scholastic Assessment Test (SAT I) of the College Entrance Examination Board. College Board application forms and SAT descriptions may be obtained in most high schools or by writing to the CEEB, Box 592, Princeton, NJ 08541. College Board applications, with the required fee, should be returned to the College Board (not to Cooper Union) at least one month before the test date. The board tests are given at centers readily available around the world. Please visit www.collegeboard.com for more information. In addition, all candidates for freshman admission to the School

*ACT scores may be substituted for SAT I scores only. Please visit www.act.org for more information.

*Students who earn a grade of 5 must take a Department of Physics examination in order to receive the 4 credits.
of Engineering must take the SAT II in math (I or II) and physics or chemistry. (See Application Calendar on page 9 and pages 11.) All College Board test results must be sent to Cooper Union (CEEB College Code No. 2097). SAT or ACT scores do not significantly enter the decision-making process of the School of Art, but are important ingredients of the architecture and engineering admission criteria.

English Proficiency Students with low verbal SAT I or ACT scores and records of poor achievement in English language study may be required to take a placement examination and, on the basis of that examination, to demonstrate increased proficiency in English before registering for HSS1. The Test of English as a Foreign Language (TOEFL) will be taken into consideration in all admission deliberations (most admitted students score at least 250 [CBT], 100 [IBT] or 600 [paper test] on the TOEFL exam).

Advanced Placement Credit and Credit by Examination The School of Engineering grants credit for high school work in Advanced Placement courses in mathematics, chemistry and physics, according to the following results on the Advanced Placement examinations:

<table>
<thead>
<tr>
<th>AP Exam</th>
<th>Score</th>
<th>Course Waived</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus B.C.</td>
<td>4, 5</td>
<td>Ma 111</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td>4, 5</td>
<td>Ch 110</td>
<td>3</td>
</tr>
<tr>
<td>Physics, Mechanics (c)</td>
<td>5*</td>
<td>Ph 112</td>
<td>4</td>
</tr>
<tr>
<td>Physics, Electro (c)</td>
<td>5*</td>
<td>Ph 213</td>
<td>4</td>
</tr>
</tbody>
</table>

No student is required to accept Advanced Placement credit from the School of Engineering. All students who score 5 on Advanced Placement examinations in English literature or European history may be eligible for three credits for each examination. In some cases, instead of receiving credit, students may be permitted to fulfill part of the humanities or social sciences requirement with an appropriate elective course. Those who wish to be considered either for AP credit or for advanced placement in an elective course should notify the Faculty of Humanities and Social Sciences before the first week of classes. Cooper Union will consider granting credit for study in the Armed Forces, verified by U.S.A.F.I.

Early Decision (for Art Applicants) A select number of potential School of Art students seen at portfolio reviews are invited to complete their application and hometest for admission before the application deadline. In addition, if the School of Art is a first-year applicant’s first choice, the applicant may choose the Early Decision option. All Early Decision applications will be reviewed and decisions will be rendered by the end of February, about one month before the normal notification date of April 1. Applicants who are admitted under the Early Decision option must make their commitment to the School of Art by April 1. Early Decision is an option for both first-year and transfer art applicants.

Deadlines for Early Decision—School of Art

<table>
<thead>
<tr>
<th>Deadlines for Early Decision</th>
<th>School of Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 30</td>
<td>Last day to take SAT or ACT</td>
</tr>
<tr>
<td>December 1</td>
<td>Application and academic records due for applicants choosing Early Decision option</td>
</tr>
<tr>
<td>Mid-December</td>
<td>Hometest mailed to applicants choosing the Early Decision option</td>
</tr>
<tr>
<td>Mid-January</td>
<td>Completed hometest submission date for applicants choosing Early Decision</td>
</tr>
<tr>
<td>Late-February</td>
<td>Notification of admission decision for all Early Decision applicants</td>
</tr>
<tr>
<td>April 1</td>
<td>Early Decision candidate’s reply date</td>
</tr>
</tbody>
</table>

Rolling Admission (for Art Applicants) Potential School of Art students who have received a preliminary review at National Portfolio Days, which occur after Cooper Union’s regular admission deadline (January 9), may be invited to apply after the regular admission deadline. All reasonable effort is made by the School of Art Admissions Committee to review these applications in a fair and timely fashion.

Early Decision (for Engineering Applicants) If the School of Engineering is the first choice of an applicant, the candidate may apply under the Early Decision plan. Cooper Union will consider an application earlier than usual and give the applicant a decision in advance of the normal notification date. Application, test scores and high school records must be received by Cooper Union and withdrawn by December 1. Applicants who are admitted under the Early Decision option must agree to enroll in the School of Engineering at Cooper Union and withdraw all other college applications.

Deadlines for Early Decision—School of Engineering

<table>
<thead>
<tr>
<th>Deadlines for Early Decision</th>
<th>School of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1</td>
<td>Application, test scores and records must be received</td>
</tr>
<tr>
<td>December 22</td>
<td>Notification of admission decision</td>
</tr>
<tr>
<td>February 12</td>
<td>Candidate’s reply date</td>
</tr>
</tbody>
</table>

Admission after Three Years of High School Candidates of exceptional merit may be considered for admission after completion of three years of high school. Engineering applicants must have excellent high school averages and test scores. Arts and architecture applicants must have excellent high school records and exceptional ability. A recommendation from the high school principal, at least one recommendation from a teacher and an interview will be required. In accordance with the regulations of individual states, a student may or may not be eligible to receive an Equivalency Diploma after completion of a specific number of credits in appropriate subject areas at Cooper Union. It is the responsibility of the applicant to investigate his/her state regulations in this regard.
Certificate in Art Requirements

A Certificate in Art program is offered as an alternative to the B.F.A. program. Candidates for the certificate program must complete 60 credits in two years of full-time study (with a minimum of 30 credits per year) or in four years of part-time study (with a minimum of 15 credits per year). All foundation studio courses must be completed and students must follow prerequisite course requirements in selecting advanced studio. The Certificate in Art program consists of 30 credits in foundation studio, 21 credits in advanced studio and nine credits in art history. All admission requirements, academic standards and regulations of the School of Art apply to the certificate program. Students in the certificate program may apply through the Office of Admissions and Records for transfer to the B.F.A. program after 42 credits of work have been completed at Cooper Union. Transfer certificate students may transfer a maximum of 12 credits from another institution toward their certificate.

International Students

All applicants to Cooper Union must live in the United States or its possessions or territories or apply from a domestic address. A minimum TOEFL score of 250 (CBT), 100 (IBT) or 600 (paper test) is required. Students on visas (those who are non-citizens or who are not permanent residents) who are accepted to Cooper Union will be required to file a Certification of Finances with the Office of Admissions and Records prior to receiving an I-20 and registration. The Certification of Finances must certify that students meet the minimum financial support requirements for resident students as indicated for each school (see Budget Guide, page 26). Students on visa are assessed a fee of $875 per semester.

Budget

We provide full-tuition scholarships to all enrolled students and for those who apply, administer financial aid to help cover the additional costs of studying at Cooper Union (i.e., books, supplies, housing, meals, etc.). However, it is important for all students to consider these expenses and try to budget accordingly. Please see page 24–26 for more information about costs and financial aid.

Cooper Union reserves the right to change or amend its regulations, curricula, fees and admission procedures without prior notice.

Registration

Unless permitted by the dean of Admissions and Records to do otherwise, all students must report on the scheduled dates to register and pay fees and laboratory deposits. Students who fail to meet all financial obligations to Cooper Union will not be permitted to register. No student will be admitted to classes without evidence of completion of registration. Students who fail to register will be dropped from the rolls.

Attendance

School of Architecture and School of Art

Classes are scheduled Monday through Friday between 9 am and 10 pm. Studio facilities usually are available to students on Saturdays and Sundays throughout the academic year.

Each student is required to be punctual and to attend each scheduled class. In the case of unavoidable absence, the student should, on his/her return, report to the instructor to explain the absence and inquire about making up the lost work. All architecture students are provided with studio space and are expected to work in it during regular building hours.

School of Engineering

Each student is expected to attend all classes and to satisfy other requirements in each course in such ways as the instructor may prescribe. If a student is absent an excessive number of times, he/she may, at the discretion of the instructor and with the approval of the dean, be asked to withdraw from the course.

After each absence, it is the student’s responsibility to consult with the instructor, without delay, to determine the nature of the makeup work required.

Faculty of Humanities and Social Sciences

Each student is expected to attend all classes. No more than two unexcused absences will be permitted during any given semester. In the case of an unavoidable absence, the student should, on his/her return, report to the instructor to explain the absence and inquire about making up the lost work. Students who are absent three or more times may receive a reduction of the final grade or, at the discretion of the instructor, be asked to withdraw from the course.

Calendar Changes

The academic year at Cooper Union has fall and spring semesters and runs from September to May. In order to serve the student body most effectively during the academic year, Cooper Union cannot modify its calendar or procedures to meet special demands of students.
Academic Standards and Regulations For specific academic standards and regulations of each school, consult the appropriate sections of this catalog.

Dismissal Cooper Union reserves the right at any time to dismiss a student whose conduct, attendance or academic standing is, in its judgment, unsatisfactory and to grant or withhold credits, certificates, degrees or diplomas. Disciplinary authority is vested in the President’s Office.

Health Cooper Union requires a report of a physical examination from a licensed physician of the student’s choice. Cooper Union will provide its own medical form for this purpose and the form must be completed in its entirety. This report must include a record of vaccinations and immunizations. In addition, New York state law requires that students respond to a query concerning whether or not they have been immunized against meningitis.

The college reserves the right to exclude from attendance at any time any student whose physical or emotional condition is such that, in the opinion of a medical officer, attendance would endanger either the student’s own welfare or that of other members of the community. Students whose attendance at Cooper Union has been interrupted by a dismissal or extended leave of absence need to submit new medical records before they resume attendance. Likewise, students continuing on to the graduate program at Cooper Union should submit new medical forms at the time of beginning graduate study.

Vaccination and Immunization New York State law requires that all undergraduate and graduate students be immunized against measles, mumps and rubella. The law applies to all students born on or after January 1, 1957.

Proof of immunity consists of:
- Measles: Two doses of live measles vaccine administered after 12 months of age, physician documentation of measles disease or a blood test showing immunity. **The exact date of these shots in month-day-year format must be written on the form and certified by the physician.**
- Mumps: One dose of live mumps vaccine administered after 12 months of age, physician documentation of mumps disease or a blood test showing immunity. The New York State Assembly is currently considering a proposal to require two mumps shots.
- Rubella: One dose of live rubella vaccine administered after 12 months of age or a blood test showing immunity.

Proof of immunity, including dates of immunizations, must be filed with the Office of Student Services prior to each student’s initial registration at Cooper Union. Students who claim a religious objection to being immunized must send a signed letter attesting to this fact to the dean of students by July 15.
Students may not attend any events on campus, including classes and orientation programs, without having submitted these forms.

Meningitis Status New York State Public Health Law Section 2167 requires colleges to distribute information about meningococcal disease and vaccination to all enrolled students.

Meningitis is rare; however, cases of meningitis among young adults have more than doubled since 1991. When the disease strikes, its flu-like symptoms make diagnosis difficult. If not treated early, meningitis can lead to swelling of the fluid surrounding the brain and spinal seizures, limb amputation and even death.

Cooper Union is required to maintain a record of the following for each student:

• A response to the receipt of meningococcal disease and vaccine information signed by the student or the student’s parent or guardian, AND EITHER
• A record of meningococcal meningitis immunization within the past 10 years, OR
• An acknowledgement of meningococcal disease risks and refusal of meningococcal meningitis immunization signed by the student or the student’s parent.

Students are asked to provide this information by July 15 of the year they enter Cooper Union.

Health Insurance Cooper Union requires all students to submit proof that they have health insurance prior to registration. Students who fail to supply the information requested on the Student Accident and Sickness Insurance Enrollment/Waiver Form before the beginning of the fall semester will be billed for the Cooper Union Student Accident and Sickness Insurance at a cost of $1,629 for the 2008-09 academic year.

Obligations Students will be held accountable for all individual obligations, financial and other, entered into with Cooper Union. Students who fail to meet all financial obligations to Cooper Union will not be permitted to register. No student will be included in the graduating class unless all obligations have been accounted for prior to graduation. Cooper Union will withhold transcripts and other information about a student who has not met financial obligations.

Transcripts Official transcripts of a student’s scholastic record are issued directly to officials of other institutions or examining boards, upon request to the dean of Admissions and Records and Registrar. Each copy of a transcript will cost $5 (there is no charge to currently enrolled students). Requests should include the name and complete address of the person who is to receive the transcript and must include the signature of the student or alumnus/a. Each student receives a grade report after the close of each marking period. Transcripts are not issued for students during the period of time in which grades are being recorded. Transcripts of student grades are issued to inquiring employers and agencies if a student notifies the dean of Admissions and Records and Registrar in writing, authorizing the distribution of the transcript. Official transcripts are not issued directly to students or to alumni.

Student Records Notification of FERPA Rights The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. These rights include: 1) The right to inspect and review the student’s education records within 45 days of the day Cooper Union receives a request for access. Students should submit to the Office of Admissions and Records written requests that identify the record(s) they wish to inspect. The Office of Admissions and Records official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the Office of Admissions and Records, the office shall advise the student of the correct official to whom the request should be addressed. 2) The right to request the amendment of the student’s education records that the student believes is inaccurate. Students may ask the Office of Admissions and Records to amend a record that they believe is inaccurate. They should write the Registrar and clearly identify the part of the record they want changed and specify why it is inaccurate. If the Registrar decides not to amend the record as requested by the student, the Registrar will notify the student of the decision and advise the student of his or her right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing. 3) The right to consent to disclosure of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent. One exception, which permits disclosure without consent, is disclosure to school officials with legitimate educational interests. A school official is a person employed by Cooper Union in an administrative, supervisory, academic, research or support staff position; a person or company with whom Cooper Union contracted (such as attorney, auditor or collection agent); a person serving on the Board of Trustees or a student serving on an official committee (such as a disciplinary or grievance committee) or assisting another school official in performing his or her tasks. A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility. 4) The right to file a complaint with the U.S. Department of Education concerning alleged failures by Cooper Union to comply with the requirements of FERPA. The name and address of the Office that administers FERPA is: Family Policy
Program Changes During the first several days of a semester, courses may be added to or dropped from a student’s program without penalty or fee (program adjustment). Adding of courses after the posted date is not permitted. Students who wish to change their academic programs should consult with appropriate deans. All program changes must be reported by the student to the dean of Admissions and Records. A $25 fee will be charged for dropping courses after the drop/add period.

Transfer of Academic Credit Cooper Union students should obtain the permission of their dean prior to registering at another college in anticipation of receiving transfer credit for summer or evening session courses. Grades for transfer credits are not included in calculating your grade point average.

Student Property Cooper Union assumes no responsibility for loss of or damage to the work or property of students.

Policy on Religious Observances No student shall be refused admission to or be expelled from Cooper Union solely because he/she is unable to participate in any examination, study or work requirement because of religious observances and practices. It is the intent of Cooper Union to accommodate reasonably individual student and faculty religious obligations and practices without penalty, based on good faith effort and due notice to those relevantly concerned of the anticipated religious observance date. There is a mutual obligation of students and faculty to provide prior notice to each other of anticipated absences. Students absent because of religious observances and practices will be given the opportunity to make up any examination, study or work requirement missed without penalty.

Policy on Alcoholic Beverages and Illegal Drugs Cooper Union strictly adheres to all local, state and federal laws relating to the use, possession or illegal manufacture of drugs and alcohol on its premises or at any official college-sponsored event. Violators may be subject to prosecution in accordance with federal, state or municipal law and are subject to Cooper Union disciplinary proceedings as outlined in A Code of Fair Practice. On campus, students over the age of 21 may consume alcohol only in the context of official campus events where there is a security guard present to check IDs. Alcohol may not be carried from the room in which it is served. Student groups recognized by the Joint Activities Committee and approved for a budget line for serving alcohol must apply for an alcohol permit and follow the Cooper Union procedures listed at the end of this section.

NEW YORK STATE LAW REGARDING ALCOHOL

Section 65 of the New York State Alcohol Beverage Control Law states:

“No person shall sell, deliver, give away or cause or permit to be sold, delivered or given away any alcoholic beverages to:

• Any person, actually or apparently, under the age of twenty-one (21) years:
• Any visibly intoxicated person;
• Any habitual drunk.”

In addition, legislation enacted in November 1991 specifies that a U.S. or Canadian driver’s license or non-driver’s identification card, a valid passport or an identification card issued by the United States Armed Forces must be used as written evidence of age for the purchase of alcoholic beverages. New York State law also prohibits the possession of alcoholic beverages with the intent to consume by a minor and penalizes the use of a fraudulent proof of age to procure alcohol. Social host liability may be imposed on any person who serves alcohol to a minor.

Procedures for Use in Serving Alcoholic Beverages at Student Events/Exhibitions: Student groups recognized by the Joint Activities Committee must first apply for and be approved for a budget for their event. No later than two weeks before the approved event, two members of the student group must apply for an alcohol permit from the dean of students and complete arrangements to hire security guards. These student sponsors must sign an agreement to follow the rules listed below:

Serving Alcohol
1. The serving of hard liquor is not permitted.
2. Cooper Union has a New York State Liquor Authority permit for the serving of wine and beer at student events. Such serving will be limited to those persons who can prove attainment of the minimum legal drinking age in New York State of 21 years. To facilitate quick identification of students of legal age at the point of service, a process of carding that requires the presentation of the Cooper Union ID will be carried out by a security guard available solely for that purpose and paid for by the student sponsors either through allocated JAC funds, or, in the case of student exhibitions, by the student exhibitors. There are no exceptions to this requirement.
3. Sponsors of events have the primary responsibility for ensuring that only those of legal drinking age are served alcohol. Sponsors must include at least two persons 21 years of age or older, and they must sign the required alcoholic beverage permit. Before authorization to hold an event can be given, all student sponsors must undergo an orientation with the dean of students or a designated rep-
4. Such events must include the serving of food, in sufficient amount for the numbers attending, and the displaying of a variety of non-alcoholic beverages must be featured as prominently as alcoholic beverages and dispensed in the same area.

5. The promotion of alcohol in advertisements for events is not permitted. Other aspects of the event such as entertainment or food should be emphasized in the advertisements.

6. The serving of alcoholic beverages should be discontinued at approximately one hour before the end of the event.

7. Event sponsors must not only refuse to serve alcoholic beverages to anyone who appears intoxicated, but also must provide appropriate assistance to such persons. Assistance may include, but is not limited to, providing safe transportation arrangements for intoxicated guests and arranging for medical help.

8. State law requires that a U.S. or Canadian driver’s license or non-driver identification card, a valid passport or an ID issued by the U.S. Armed Forces must be used as written evidence of age for procuring alcoholic beverages.

9. The amount of alcohol permitted shall reflect the number of students over 21 years of age expected at the event, as approved by the dean of students, and in no case shall exceed two kegs of beer.

Exhibitions

Students who wish to serve alcohol in connection with a student exhibition should consult the deans of the Schools of Art or Architecture for the appropriate procedure to follow, including ordering a guard.

Smoking

In accordance with New York City’s Clean Indoor Air Act, it is the policy of Cooper Union that:

Smoking is prohibited in the Student Residence, auditoriums, classrooms, studios, laboratories and all public areas, including lobbies of all buildings.

The administration requests all department heads, maintenance personnel and security guards to cooperate with this policy. If they see anyone smoking (cigarettes, cigars or pipes) in any areas within the buildings, warn them that Cooper Union, including the person smoking, are subject to fines and/or penalties. They should extinguish whatever they are smoking. The law is administered by the New York City Department of Health.

A written report should be made out for each occurrence and sent to the Department of Buildings & Grounds.

Campus Security and Safety

“My earnest desire is to make this building and institution contribute in every way possible to unite all in one common effort to improve each and every human being, seeing that we are bound in one common destiny and by the laws of our being are made dependent for our happiness on the continued acts of kindness we receive from each other.”

—Peter Cooper

It is in light of this statement that Cooper Union establishes an attitude toward campus security and safety. The Cooper Union has been fortunate in maintaining an atmosphere where serious criminal activities have not occurred. Our goal remains to encourage the integrity, honesty and responsibility of each individual student to maintain an atmosphere of harmony and mutual respect.

Every incident of behavior that seems inconsistent with our philosophy and principles of safety and security should be reported to appropriate campus authorities. The guards in the lobby of each building should be notified immediately of any emergencies. Depending on the circumstances, it may also be appropriate to call the police at 911.

Students and staff should also file an incident report with either the office of the director of Facilities Management or with the Office of Student Services. Such reports help Cooper Union respond to breaches in security. The director of Facilities Management maintains a daily log of such incidents. This log is available for inspection.

When appropriate, information about such incidents shall be disseminated to the community as a whole via fliers or memoranda.

The Campus Crime Awareness and Campus Security Act of 1990 requires colleges and universities to make available to all current students and employees and to all applicants for enrollment or employment statistics concerning the prevalence of certain types of crime on campus and in the neighborhood. These statistics are published annually in the Campus Security Report available on the Cooper Union website and from the Office of Student Services, 30 Cooper Square, 6th floor, New York City, NY 10003. Crime statistics are available online at http://opc.ed.gov/security.
Preamble
As an educational community, The Cooper Union affirms the rights of all its students to pursue freely their scholarly, artistic and intellectual interests. The Cooper Union has developed policies and procedures to safeguard this freedom and to maintain an environment conducive to academic endeavor. These rules are not intended to replace federal, state or municipal laws; all Cooper Union students are responsible for upholding such laws, and violation of the law may result in disciplinary action being taken by The Cooper Union.

In addition to the Standards of Conduct set forth below, students are bound by the rules regarding the use of individual facilities at The Cooper Union, including, but not limited to, the library, the Student Residence, the Computer Center, laboratories, shops, etc. Students are asked to assume positions of responsibility on the Cooper Union Student Judicial Board in order that they might contribute insights and develop skills in the resolution of disciplinary cases.

The Cooper Union reserves the right to amend this code at any time it deems necessary. Changes made to the Code must be approved by the Student Activities Committee before taking effect.

Part One: Student Rights
Students have certain rights established by federal, state or local statutes or institutional policy. Among these rights, but not limited to these alone, are:

- The freedom to engage in free discussion, inquiry, and expression.
- The freedom of access to public records.
- The freedom of association.
- Freedom from assault.
- The right to express views on issues of institutional policy.
- Freedom of the press.
- Freedom from discrimination on the basis of race, religion, sex, color, sexual orientation, national or ethnic origin or disability.
- Freedom from sexual harassment.
- The freedom from improper academic evaluation.

Part Two: Standards of Conduct for Students

Category A
The Cooper Union finds the following categories of violations extremely serious:

1. Physical assaults resulting in injury, including sexual assaults.
2. Discrimination or bias related acts of assault or abuse.
3. Illegal drug sales and/or possession of illegal drugs.
4. False fire alarms or acts which undermine safety/security equipment systems.
5. Possessing or introducing dangerous weapons to the campus.
6. Violations of the campus alcohol policy which result in injury or damage to property or undermine the safety and security of the campus.
7. Acts of academic dishonesty including cheating, plagiarizing or submission of work which has not been prepared by the person claiming authorship.
8. Acts of fraud as defined in civil statutes. Some examples of these acts, but not limited to the following, are misrepresentation, falsifying records and/or documents, etc., or furnishing fraudulent information.
9. Acts of theft or vandalism against the property of another student, staff or faculty member or the school.

For these categories of the violations, the sanction will ordinarily be suspension or dismissal. In some cases, the President’s Right of Summary Suspension may also be invoked.

Category B:
The purpose and ideals of the Cooper Union depend, for their full achievement, on respect, cooperation and integrity among members of the community. The Cooper Union has adopted the following rules of behavior in the interest of maintaining an orderly atmosphere:

1. At all reasonable times, a student shall comply with a request for identification from an employee of the College (guard, technician, professor, dean, etc.).
2. Students will respect the building hours and will leave the premises at the appropriate time.
3. Except for actions protected under the state, federal or institutional governances, a student may not willfully obstruct or disrupt any authorized activities on college premises or other Cooper Union activities, including its public service functions.
4. A student may not engage in activities commonly called libel and/or slander.
5. A student may not be involved in acts that cause physical or psychological harm.
6. A student may not consume, buy, sell, borrow, possess, lend or give as a gift any drug, narcotic or alcoholic beverage in such a way that would be in violation of any local, state or federal law.
7. When a student has a guest on campus, the student is responsible for the conduct of his or her guest.

8. The use of the computer and network facilities is for the purpose of supporting the educational experience at The Cooper Union. Unauthorized or inappropriate use of these facilities is prohibited. Misuse may include, but is not limited to, damaging or altering records or programs; invading the privacy of other users by using or manipulating directories, files, programs or passwords; engaging in disruptive behavior; illegally duplicating copyrighted or licensed software; using the facilities in support of a commercial concern or venture, or any unauthorized use of network and/or computer hardware, software, accounts, or passwords.

9. A student may not gamble for money or other valuables while on the campus of The Cooper Union.

10. A student may not threaten members of the Student Judicial Committee or attempt to tamper with witnesses to the Student Judicial Committee.

11. A student may not smoke in a nonsmoking area.

Complaints that a student has violated any of the standards described in Category B above should be referred to the dean of students, except that acts of academic dishonesty should be referred to the Academic Standards Committee of the School in which the student is enrolled. The dean of students shall meet with the student(s) complained against and shall try to resolve the matter with the consent of all parties.

The Student Judicial Committee may also consider complaints that are not delineated under Category A or Category B above, provided the person against whom the complaint is filed is notified in writing as to whether the proceeding will follow the rules for Category A or Category B. A Judicial Panel formed under the rules of Category B retains the right to request that the case be heard again following Category A rules.

Complaints that a student group has violated any of the Standards of Conduct may be referred by the Student Judicial Committee to the Joint Activities Committee for resolution. Such action will not preclude the possibility of individual members of the group being subjected to charges as well.

Category C: Sexual Harassment

The Cooper Union has established separate procedures to handle student complaints about sexual harassment imposed on students by staff or faculty.

Sexual harassment, whether it imposes a requirement of sexual cooperation as a condition of academic achievement or not, is inimical to this environment. Student complaints should be filed with the Title IX hearing officer.

The hearing officer will try to resolve the matter amicably and privately. If this effort is not successful and if the Title IX hearing officer deems the complaint to have sufficient substance, a hearing board appointed by the President comprised of an academic dean, a faculty member and an elected student representative, all of whom are from a school other than that of the complainant, will review the complaint and make recommendations to the President.

Complaints about sexual harassment of one student by another student or group of students will be handled as a complaint as described in Category A.2 or Category B.5, as deemed appropriate by the Student Judicial Committee.

Part Three: Disciplinary Sanctions Which May Be Imposed

1. **Warning** A warning in writing, in the case of a minor infraction, that further violation of the Standards of Conduct may result in a more severe disciplinary sanction. A copy of the warning letter will be retained by the Student Judicial Committee in its files until the student permanently leaves The Cooper Union.

2. **Loss of Privileges** In cases that involve breaking the rules of a specific facility, students may lose the privilege of using that facility on a temporary or permanent basis.

A student who loses privileges may also be issued a warning or higher penalty.

A copy of the letter noting a loss of privileges will be retained by the Student Judicial Committee in its files until the student permanently leaves The Cooper Union.

3. **Probation** A letter of censure given in instances of more serious violation of the Standards of Conduct where it is believed more stringent disciplinary action is not required. Probation is a trial period during which a student who has been in difficulty has an opportunity to demonstrate that he or she can be a responsible member of the community. The terms of probation may be varied to fit the individual circumstances and may include a recommendation for psychological counseling. The probation letter will be retained by the Student Judicial Committee in its files until the student permanently leaves The Cooper Union.

4. **Suspension** Given in cases when it is judged that the student should be removed from the college community. This penalty is for a stated period of time, not less than one semester or the remainder of the semester. A suspended student is prohibited from being on any Cooper Union premises during the period of suspension without written authorization from the Office of the President. A record of the suspension will be retained in the files of the Student Judicial Committee until the student leaves Cooper Union (e.g., graduates, transfers, etc.). A notification of the suspension will be sent to the academic dean, the Office of Admissions and Records, and the Office of the President.
5. Dismissal Subject to the approval of the President of the college before taking effect, a disciplinary dismissal involves involuntary and permanent dismissal from the college. The President shall have the right to accept, reject or modify the dismissal proposed. A record of the student’s dismissal will become a permanent part of the student’s file and will be noted on his/her transcript.

6. Other Actions The Student Judicial Committee may impose other penalties it deems appropriate to the infraction of the Standards of Conduct involved. Examples of such penalties might be: financial restitution for damages done to the property of The Cooper Union or the property of individuals or for medical and other expenses incurred by individuals as a result of actions by an individual in violation of the Standards of Conduct.

7. Presidential Right of Summary Suspension Subject to prompt review, the President of The Cooper Union may summarily suspend a student from the college when, in his or her best judgment, such immediate action is necessary for protecting the health and safety of the college and/or any member of the college community. The President will consult with the dean of the school which the student attends prior to such action, unless, in his or her opinion, time does not permit. Any person so suspended shall have all rights as outlined in the Judicial Code. Summary suspensions must be reviewed by the Student Judicial Committee within seven (7) days in which regular academic business is being conducted. Until and unless the defendant is found to have violated the Standards of Conduct, his/her status as a member of the Cooper Union community shall not be altered. Any person so suspended shall have the right, if the suspension is not upheld by the Student Judicial Committee, to be granted excused absences from all classes and academic responsibilities missed because of such action.

8. Legal Action The above listed penalties shall be in addition to any penalties or liabilities pursuant to the laws of the State of New York, both civil and criminal. The dean or his or her designee may, at his or her discretion, depending on the gravity of the violation, file a criminal or civil complaint with the appropriate public official. Filing an action under this code does not preclude the complainant from also filing a criminal or civil complaint.

Part Four: Cooper Union Student Judicial Committee

The Student Judicial Committee shall have jurisdiction of all proceedings as stated in this document over matters involving an alleged violation of any of the Standards of Conduct stated above. Two students and two alternates shall be elected from among the representatives of each of the student councils to serve on the Student Judicial Committee.

In the case of Category B offenses, six students (two from each school) from the Student Judicial Committee shall constitute the hearing panel. The person bringing charges and the person being charged each have the right to challenge the inclusion of two of these panelists for cause so long as four students, including alternates, remain available to hear the case and so long as such challenge is made before the hearing commences. The panelists shall elect their own chairperson.

In the case of Category A offenses, six students (two from each school) from the Student Judicial Committee shall be joined by any two administrative officers of The Cooper Union. The associate deans from the school in which the student bringing charges and the student being charged are registered, or other designated representative of the dean of the appropriate faculty, shall be invited to participate as administrative officers, except in cases involving academic dishonesty, when a member of the appropriate Academic Standards Committee shall be invited instead. The person bringing charges and the person being charged each have the right to challenge the inclusion of two of the student panelists for cause so long as four students, including alternates, remain available to hear the case and so long as such challenge is made before the hearing commences. The panelists shall elect their own chairperson.

The dean of students shall serve as coordinator for the committee and shall have the responsibility of inviting the administrative officers. This does not preclude the dean of students from acting as witness, if necessary.

In a case where the panel hearing either a Category A or Category B violation is equally divided on a decision, the matter will be considered by the Appeal Board, which will make the final decision.

The Committee shall adopt its own operating rules and have the power of amendment, provided such amendment(s) shall not apply to any case pending at the time of the amendment. A copy of any operating rules in effect at the time of the complaint shall be supplied to the person being charged at the time that person receives notice of the hearing.
Part Five: Procedures for Filing Charges and Conducting Hearings

1. Any member of the community may initiate charges of an infraction of the Standards of Conduct by a student. Such complaint should be made in writing and addressed to the Student Judicial Committee. The Student Judicial Committee may not sanction a student for any matter not included in the written complaint. The complaint shall set forth in summary fashion the basic facts in which it is stated that an infraction of a Standard of Conduct has occurred. The particular standard or standards must be likewise set forth.

2. A hearing on the allegations contained in the complaint will be scheduled within ten working days by the dean of students. The dean of students shall have delivered to the person charged a copy of the papers setting forth the charges together with the time and the place of the hearing on the charges and a copy of any operating rules currently in effect for the Student Judicial Committee.

3. Proceedings conducted by the Student Judicial Committee are completely independent of either civil or criminal proceedings and may act simultaneously with either. The Student Judicial Committee is administrative, rather than criminal or civil, in nature. It does not use technical “rules of evidence” and requires lower standards of proof to reach a conclusion. This lower standard is known as a “preponderance of evidence,” and indicates that it is “more likely than not” that a violation did, or did not, occur.

4. The failure of the student charged to appear at the stated time and place shall constitute a waiver of the right to a hearing as set forth.

5. All hearings conducted by the Student Judicial Committee shall be open unless either party requests the hearing to be closed.

6. Any person charged or bringing charges in a Category A offense shall be entitled to a representative of his or her choice at his or her expense.

7. Every student so charged shall be presumed not to have committed the alleged violation until the Student Judicial Committee arrives at its decision.

8. The Student Judicial Committee will select one of its members to be chairperson and preside over each hearing. The person presiding shall exercise control over the proceedings to avoid needless consumption of time and to achieve orderly completion of the hearing. Any person, including the person charged or bringing charges, who disrupts a hearing may be excluded by the person presiding.

9. Any person charged or bringing charges, having appeared at the hearing, shall have the right to question any witness presented and to contest the acceptance into the record of any document presented as proof in support of the charges. In this latter case, the Committee shall decide whether the document bears on the issues involved. The person charged shall have the right to present witnesses or documents in his or her defense. The names of any witnesses must be provided to the Committee at least 48 hours in advance of the hearing. The Committee has the right to refuse to hear witnesses whose testimony they deem irrelevant or to limit the testimony of witnesses to matters that the Committee deems pertinent. Prospective witnesses, other than the person charged and the person bringing charges, may be excluded from the hearing during the testimony of other witnesses.

10. Formal rules of evidence shall not be applicable in disciplinary proceedings conducted pursuant to this Code. Unduly repetitious or irrelevant evidence may be excluded, as determined by the person presiding.

11. Committee members may take notice of matters that would be in the general experience of Cooper Union students, faculty, or staff members.

12. The Committee shall designate one of its members to take minutes of the proceedings and to arrange for a tape recording of the hearings. The tapes shall be retained until all parties to the complaint have permanently left The Cooper Union.

13. Decisions, including the sanctions imposed by the Student Judicial Committee, shall be made in executive session by majority vote. Witnesses, including the person being charged or bringing charges, shall not be present at the executive session. All proceedings in this executive session except the decision itself shall be confidential and shall not be disclosed outside of the executive session, except in cases where federal, state, or municipal law mandates disclosure of the decision to the complainant or to the community.

14. In the event of a recommendation of a disciplinary dismissal herein, the President shall review the recommendation before it is put into effect, as described in “Disciplinary Dismissal.”

15. The decision of the Student Judicial Committee may be given in hand to the student charged or mailed to the last address given by the student.

16. In the written decision, if the student is found to have violated any of the Standards of Conduct, the student shall be notified in the notice setting forth the decision of the right to appeal the decision within 4 business days. The appeal must be in writing and set forth the reasons upon which the appeal is made.
Part Six: Appeal

A. Composition of Appeal Board

1. Members of the Board shall consist of two students and one academic dean.
 a. Annually, the elected student representatives who form the Student Councils from the three schools shall appoint one member and one alternate from each school for available service on the Appeal Board.
 b. In a specific case, one student member must be from the school attended by the appellant.
 c. The remaining student will be selected for service on a rotating basis from the remaining two schools.
 d. In the event for any reason a student does not serve on the Appeal Board, the alternate student may serve and participate fully in the decision.

2. The academic dean must be from the school the appellant attends, except in the event of the unavailability of any dean so chosen, or if the dean is an interested party in the matter under appeal. In such case, the President shall select another dean to serve as a member of the Board. In any event, the dean shall serve as convener of the Board and as chair.

B. Limitations of the Authority of the Appeal Board

The Appeal Board shall limit its review of the Student Judicial Committee’s record to these issues:

1. Does the record show that the parties had a fair and adequate opportunity to prepare and present their case?
2. Was the sanction imposed, if any, fair and proper in light of the gravity of the infraction proved?

C. Decision on Appeal

1. Appellant must present a written application for a hearing by the Appeal Board within four (4) business days of the Student Judicial Committee decision.
2. The Appeal Board may, after considering the appeal:
 a. Accept the decision by the Student Judicial Committee.
 b. Return the case to the Student Judicial Committee for further hearings in keeping with the Appeal Board instructions.
 c. Reverse the Student Judicial Committee decision and dismiss the case.
 d. Accept the Student Judicial Committee decision, but reduce the sanction. The sanction may not be increased.

If the Appeal Board accepts the report of the Student Judicial Committee (whether it lowers the sanction or not), the matter shall be deemed final.

Financial Aid

Tuition
The Cooper Union annual tuition charge for 2008–2009 is $35,000. Each registered student receives a full-tuition scholarship.

Fees and Refunds
A nonrefundable application fee of $65 is paid by all candidates for admission.

Each student enrolled in a degree program pays a student fee of $725 per semester. For new students, this fee is payable on acceptance of admission and is not refundable.

For continuing students, the $725 fee per semester is payable prior to the first day class; it is 100 percent refundable prior to the beginning of classes and 50 percent refundable during the first two weeks of classes. Thereafter, it is not refundable.

Continuing students must pay each semester’s student fee in accordance with the bill’s “due date.”

All fees are subject to annual revision. Students who do not pay the required fee will have their registration cancelled.

General Lab and Studio Materials Fee
A general lab and studio materials fee of $75 per semester will be charged to each student’s account. As the title suggests, this fee covers normal usage, “wear and tear,” and basic supplies for laboratory and studio projects.

Refund Policy for Student Residence
A refund of housing charges resulting from an approved request to cancel the housing agreement will be made in accordance with the following schedule: 100 percent of the total housing charges for the semester if the cancellation request is made prior to August 1 for the subsequent fall semester and December 1 for the subsequent spring semester; 65 percent if made by September 30 for the fall semester and January 31 for the spring; and 35 percent if made by October 31 for the fall and February 28 (29) for the spring. No refunds will be made after these dates.

Students who are evicted from the Student Residence or whose Housing Agreements are terminated for violations of the terms of the Housing Agreement are not eligible for refunds.

Health Service & Insurance Fee
Cooper Union requires all students to submit proof, prior to registration, that they have health insurance. Students who fail to supply the information requested on the Student Accident and Sickness/Enrollment Waiver form by September 7 will be billed for the Health Service and Insurance Fee plus a cost of $1,629 in the 2008–2009 academic year.
International Student Filing Fee Students on visas (those who are noncitizens or who are not permanent residents with a "green card") are responsible for an additional fee of $1,750 per semester payable by August 15.

Graduation Fee A graduation fee of $100 is required of all students entering their last year at The Cooper Union. This fee is payable upon registration for the senior year and is refundable if a student fails to meet graduation requirements that year.

Special Fees A charge of $100 will be made for late payment of the student fee. A charge of $25 will be made per occasion involving change of section or registration program.

The Cooper Union reserves the right to change its fees at any time.

Graduate Student Fee The requirements for the master of engineering program must be completed within two years of admission to graduate status, except with the expressed consent of the dean of engineering. Requests for extension must be presented in writing to the dean in the final semester of the second year. Thesis adviser approval is also required. Master's students who receive approval to extend their studies beyond two years will be assessed a maintenance of matriculation fee of $1,000 per semester. Graduate students are assessed a key/access fee of $150 per year.

Books, Materials and School Supplies Each student must supply, at his/her own expense, textbooks, drawing materials, hand tools and other necessary items.

If laboratory apparatus, machinery or studio equipment is damaged by careless handling, the student will be charged for repair or replacement. All students enrolled in School of Art courses should be prepared to pay for consumable materials supplied by the School for student use.

If you are enrolled as a full-time student (minimum 12 credits), are a U.S. citizen or eligible non-citizen, can demonstrate financial need, have a valid Social Security Number, have a high school diploma or General Education Development Certificate (GED), are registered with the Selective Service (if required), are making satisfactory academic progress toward completing your course of study according to the standards and practices of the school, certify that you are not in default on a Federal Perkins, Federal Family Education Loan or Federal Direct Loan, do not owe a refund on a Federal Pell or Federal SEOG Grant and certify that you will use federal student aid for educational purposes only—you may be eligible to receive financial aid.

The law suspends financial aid eligibility for students convicted of certain illegal drug offenses. If you have a conviction or convictions for illegal drug offenses, call 1-800-4-FED-AID (1-800-433-3243) to determine how, or if, this law applies to you.

For the most current information on financial aid at The Cooper Union, please visit our web site: www.cooper.edu/admin/financial/index.html.

To apply for financial aid you must complete a Free Application for Federal Student Aid (FAFSA). You may submit the FAFSA through the internet using FAFSA on the Web at www.fafsa.ed.gov or by mailing a paper FAFSA. When processed, the form will produce an expected family contribution (EFC), which determines the family resources available to meet your educational expenses and your eligibility for financial aid. From this analysis we will attempt to package financial aid to provide the greatest possible assistance to the neediest students first and then to less needy students, as resources permit. You also will be required to submit a signed copy of your parents’ prior-year Federal Tax Return, and yours, if you filed. We reserve the right to request copies of your parents’ tax return if you are considered independent under federal guidelines and your non-custodial parents’ tax return if your parents are divorced. ALL information submitted on the FAFSA as part of an application for financial aid is subject to verification, a requirement of the U.S. Department of Education. Please see our web site for more information on the verification process. First-time applicants are also required to file a CSS Profile Form.

FAFSA forms should be filed no later than April 15, and all forms should be submitted to us no later than May 1.

The Cooper Union offers financial aid awards suited to each student’s need. Generally, these awards are “packaged,” which means that more than one type of aid is provided. A typical award will include some grant funds and some self-help in the form of a loan, and possibly a work opportunity. It
is expected that the entire package will be accepted. A student is encouraged to use a portion of summer employment earnings toward the following academic year’s expenses.

Federal Pell Grants These grants are awarded to undergraduate students who have not yet earned a bachelor’s degree. The amount of a Federal Pell Grant is determined by the EFC and the cost of attendance at Cooper Union. Pell Grants provide a foundation to which other aid may be added.

Federal Academic Competitiveness Grants & Federal SMART Grants The Academic Competitiveness Grants are awarded to first- and second-year undergraduates who have completed a rigorous secondary school program and have earned a minimum 3.0 G.P.A. The SMART Grants are awarded to third- and fourth-year undergraduates in the School of Engineering who maintain at least a 3.0 G.P.A. In order to be eligible for these grants, a student must be a U.S. citizen, must be eligible for a Pell Grant and must meet certain academic requirements.

Federal Supplemental Educational Opportunity Grants These grants, which usually range from $200 to $4,000 per academic year, are awarded to students with the greatest need. They are funded by both federal sources and The Cooper Union.

Federal Family Education Loan Program This program includes subsidized and unsubsidized Federal Stafford Loans. During the first year of undergraduate study, an eligible student may borrow up to $3,500; $4,500 in the second year; and $5,500 in subsequent years. Eligible dependent students may also borrow an additional $2,000 unsubsidized Stafford Loan.

Students who meet the federal requirements for independent student status and dependent students whose parents are not able to secure a Federal Plus Loan may be eligible to receive additional funds through the unsubsidized Federal Stafford Loan. First- and second-year students may borrow up to $6,000 and upper-class students may borrow up to $7,000.

Also available under this program is the Federal Plus Loan. Parents with good credit histories may borrow up to the cost of education, not covered by financial aid. These loans carry a fixed interest rate of 6.8 percent for Federal Stafford Loans and 8.5 percent for Federal Plus Loans.

You may apply for these loans by obtaining an application from your state agency or lending institution (bank, credit union, etc.) or by completing a Stafford Loan Acceptance Form available in the Financial Aid Office. Because of the heavy volume in this program, loan applications should be received in the Office of Student Services at least four weeks before the beginning of the semester to ensure adequate processing time.

Federal Perkins Loans This is a low-interest (5 percent) loan for both undergraduate and graduate students with substantial need. Repayment of these loans begins nine months after you graduate or leave school.

Cooper Union Loans These loans are offered by Cooper Union and carry the same conditions and interest rate as Federal Perkins Loans.

Cooper Union Grants Cooper Union has funds available from which awards are made to qualified students in need of aid.

Federal Work Study Under this program, eligible students may be employed on or off campus. Employment is generally limited to about 10 hours a week during the academic year. In addition, students may apply at the Office of Career Services for a variety of part-time jobs.

Priorities In considering applications for aid, first priority is given to first-degree undergraduates who have exceptional financial need and therefore could not complete their education without such aid. Second priority is given to first-degree students who demonstrate relative need. Second-degree students are prohibited under federal law from receiving federal grants and are not eligible for institutional grants beyond the full-tuition scholarship. Therefore, second-degree students are referred to the various loan programs for financial assistance.

Rights & Responsibilities Students who receive financial aid in their first year at Cooper Union generally continue to be aided in accordance with their financial circumstances from year to year. This does not imply, however, that the aid will be the same each year. Each package depends on family resources, the availability of funds, the student’s capacity for self-help and continued appropriations from the federal government. To continue to qualify for financial aid, students must maintain good academic standing and make satisfactory academic progress as determined by the standards of the school. Students on academic probation for two semesters are ineligible for federal financial aid. Reduced programs may result in a reduction in financial aid.

Federal regulations require that students who withdraw from school prior to completing 60 percent of the semester will have their eligibility for aid recalculated based on the percent of the semester completed. For example, a student who withdraws after completing only 30 percent of the semester will have “earned” only 30 percent of any financial aid received. The remaining 70 percent must be returned by the student and/or the school. Students should contact the Financial Aid Office to determine how a withdrawal will affect financial aid.

Normally, financial aid is awarded for an entire academic year, with payments made after the beginning of each semester. Amounts in excess of Cooper Union charges may be used to meet indirect costs and will be paid directly to the student each semester. If Federal Work Study is part of the financial aid package, a salary will be paid twice monthly, directly to the student.
The Cooper Union is willing to make every effort to assist the student and the student's family in helping to meet educational costs, but the school is unable to assume the role of substitute for the family.

Students awarded a Federal Stafford Loan, a Federal Perkins Loan or a Cooper Union Loan will be required to sign a legally binding promissory note and agree to the terms of a prearranged repayment schedule. Sample repayment schedules are available on our web site. The terms of these loan obligations will be defined at the time the loans are made to the student and before the notes are executed. It should be noted that these loans must be repaid so that future students may also receive loans.

Budget Guide for Students at The Cooper Union

This budget guide has been prepared with the hope that it will assist students in anticipating their financial needs while attending The Cooper Union. Based on our experience with students, we believe this to be a realistic guide for a nine-month academic year. It should be used as a guide and obviously does not reflect the exact costs involved in individual cases.

Budget Guide for 2008–2009

Architecture & Art

<table>
<thead>
<tr>
<th></th>
<th>Commuter</th>
<th>Dormitory Resident</th>
<th>Off-campus Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>(includes an average of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1,800 for supplies)</td>
<td>$7,195</td>
<td>$19,375</td>
<td>$19,575</td>
</tr>
</tbody>
</table>

Engineering

<table>
<thead>
<tr>
<th></th>
<th>Commuter</th>
<th>Dormitory Resident</th>
<th>Off-campus Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>(includes an average of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1,000 for supplies)</td>
<td>$6,395</td>
<td>$18,575</td>
<td>$18,775</td>
</tr>
</tbody>
</table>

*Students without health insurance should add a Health Service & Insurance Fee of $1,629.

International Student Budget Guide for 2008–2009

Schools of Art and Architecture

Fees	$3,350
Room and Board	$13,800
Other*	$4,075
Total:	**$21,225**

*Books and Supplies | $1,800 |
Transportation	$700
Personal Expenses	$1,575
Total:	**$4,075**

School of Engineering

Fees	$3,350
Room and Board	$13,800
Other*	$3,275
Total:	**$20,425**

*Books and Supplies | $1,000 |
Transportation	$700
Personal Expenses	$1,575
Total:	**$3,275**
Named Scholarships
To alleviate the pressing financial burden of the ever-increasing cost of living in New York City, many alumni and non-alumni have supported Cooper’s students by establishing named scholarships. The income generated by these special funds offers vital supplemental financial aid to deserving students in addition to the full-tuition scholarship awarded to each student who is admitted.

Irwin S. Chanin School of Architecture Robert O. Brown; Gus J. & Helen Condaris; Ismar David; Manuel & Flora Fernandez; John Q. Hejduk; George & Selma Klett; John Loeb & Frances Loeb; Mari Souval Spacecrafting Foundation.

School of Art Sylvia Appleman; Danny Arje; Alice Noble Ball & Francis M. Ball; William & Mary Jane Brinton; Frank Chesek Memorial; Joseph and Robert Cornell Memorial Foundation; Ismar David; Lillyan deCaro Santo; Alice Trimble DuBois; Antonya Eisen; Roberta Strauss Feuerlicht & Herbert A. Feuerlicht; Ellen Fox; Dan Friedman; Adele & Louis Gruber; William Randolph Hearst Foundation; Abraham Hersch; Rose Kleinfeld; George & Selma Klett; Walter S. Kut; Mollie Levenstein; John Loeb & Frances Loeb; Rhoda Lubalin; Henry & Sylvia Mavis; Alphonse Normandia; Veronica Lapinski Pastorini; Ed Schlossberg; Marvin A. Schwam; Jean & Joan Wolf Slawson; Barbara White.

Albert Nerken School of Engineering Abdul Azimi; Edward J. Barlow; Meredith B. Blaustein; Brunswick/Ennis; Leon Chernick; Tunny Chin; Henry Chu; Horacio Cundari; David Davis; Franklin W. Diederich; Henry & Freda Eckhardt; Margaret Lappin Fich; Samuel & Sally Gilman; Roger Gilmont; Charles Greenfield; Robert Greenwald; William Grishaw; Dr. Michael S. Gross; Elizabeth and Robert Hammond; Edward & Lillian Hawthorne; Fanny & Irving Katz Memorial; Alfred Lauder; John Loeb & Frances Loeb; Henry Mankin; Robert P. Muhlsteff; Emil Parente; William F. Partridge; Norman L. Perry; John F. & Olga Petrowsky; Michael F. Roberti; Emanuel Salma Memorial; Walter L. Schwartz; Lester D. Seymour; Switzer Foundation; Sol Tanne; Peter Torraco; Ralph Torraco; Dale & Charlotte Zand.

General Financial Aid Scholarships Irwin & Lillian Appel; H. Carl Bauman; Robert C. Bosch; Julius Dingenthal; Edward Durbin; Kathleen Gerla; Mindy & Drew Greenwald; Alexander C. Grove; Salvatore & Tina Guzzardi; Julian Hirsch; Marilyn Hoffner; Samuel J. Jaffe; Dr. Peter Kabasakalian; Estelle & Donald Maggin; Vincent P. Malahan; William H. Okun; Nathan G. Ramer; Michael A. Rampino; Benjamin Reich; Charles Lowery Robertson; Louis Schmidt; Emil Schweinberg; Shakespeare and Company; Allen Speiser; The Starr Foundation; Charles Stump; Solon E. Summerfield; Arlene and Irving Tashlick; Clifford Warren; Bert Weinstein

Book Funds Rose Sylvia Berger; Z. Braude; Anthony Carbone; Julius Dingenthal; Clare W. Gerber; Adele & Louis Gruber; Mary Hirsch; Joseph & Lucy Koosman; Norman S. Levy; Sheridan A. Logan; Joseph Mechanik; Joseph Meltzer; Albert Nerken & Jean Nerken; Oswald Otendorfer; Frank O. Reisler; Michael Robinson; Ruth Schwartz; George F. Sexton; Charles Stubbe.

Fellowships
The Irma Giustino Weiss Cultural Enrichment Fellowship Program Launched in 2002-2003, the Irma Giustino Weiss Cultural Enrichment Fellowship Program at The Cooper Union for the Advancement of Science and Art provides extraordinary access to cultural resources for exceptional students who seek a deeper understanding of the context of art and architecture. Endowed by Mrs. Irma Giustino Weiss, a 1945 alumna of the School of Art, this unique program to enhance the undergraduate experience is open to high-achieving, highly-motivated students in art and architecture, beginning in the freshman year. Throughout their years at The Cooper Union, Irma Giustino Weiss Fellows will take part in a focused exploration of the cultural riches in these select cities including visits to museums and galleries, concerts, theatrical and dance performances, specialized libraries and historical sites. Guidance Counselors are encouraged to communicate this new fellowship program—available only to entering freshman students of The Cooper Union—to top high school students with strong interests in higher education in art and architecture. Applications will be made available to formally accepted students to the School of Art and the Irwin S. Chanin School of Architecture. To view a sample application form, please visit our Web site at: www.cooper.edu/administration/admissions/weiss.html.

School of Art Rhoda Lubalin Senior Fellowship, The Rhoda Lubalin Senior Fellowship has been designated to the Herb Lubalin Study Center of Design and Typography and honors Mrs. Lubalin’s husband.

Albert Nerken School of Engineering Henry C. Enders Fellowship Funding available to students wishing to pursue graduate study in engineering; The Maxwell Lincer Fellowship Mr. Lincer was a 1942 Cooper Union Civil Engineering graduate. The Harry and Peggy Ploss Fellowship in Engineering, awarded annually based on merit and financial need to students who have completed their junior year in engineering. Mr. Ploss is a 1968 graduate of The Cooper Union.

Faculty of Humanities and Social Sciences Benjamin Menschel Fellowships for Creative Inquiry The Horace W. Goldsmith Foundation endowed this fellowship with a grant in 1994 to support
students in the fields of art, architecture, design and engineering.

Fellowships for Study Abroad

Irwin S. Chanin School of Architecture Palmer Hayden Travel Fellowship Travel Abroad For African-American Students In Art and Architecture.

School of Art Helen Dubroff Dorfman Travel Fellowship; Palmer Hayden Travel Fellowship Travel Abroad For African-American Students In Art and Architecture; The O'Brien Fellowship for Study Abroad; Martin Rothenberg Travel Fellowship.

Awards and Prizes

Edwin Sharp Burdell Award, to that member of The Cooper Union community who during the past year has done most to further the mutuality of science and art.

Irwin S. Chanin School of Architecture The Irma Giustino Weiss Prize, presented to a graduating student who demonstrates exceptional potential for creative achievement upon earning a bachelor's degree in art or architecture; The New York Society of Architects Matthew W. Del Gaudio Award, for excellence in total design; The American Institute of Architects Henry Adams Medal and Certificate of Merit, to the first-ranked graduating student in a first professional degree program; The American Institute of Architects Henry Adams Certificate of Merit, to the second-ranked graduating student in a first professional degree program; Alpha Rho Chi (National Professional Architectural Fraternity) Medal, to a graduating student who has shown an ability for leadership, who has performed willing service for his/her school or department and who gives promise of real professional merit; The Cooper Union Alumni Association Annual Award, to a graduating student for outstanding service to the school; Abraham E. Kazan Award, to a graduating student for outstanding performance in urban design; George Leslie Prize, to a graduating student as suggested by the dean; Peter W. Bruder Memorial Prize, to a graduating student for excellence in structures; Allen N. Goldfischer Memorial Award, for a fifth-year graduating student whose thesis project best explores relationships between humanistic and aesthetic principals in an urban context.

School of Art The Irma Giustino Weiss Prize, presented to a graduating student who demonstrates exceptional potential for creative achievement upon earning a bachelor's degree in art or architecture; The Jacques and Natasha Gelman Trust Award, presented to a graduating student who demonstrates exceptional ability in the field of painting or sculpture; The Cooper Union Alumni Association Annual Award, to a graduating student for high academic achievement and outstanding service to the school; Sylvia Appleman Painting Award to a third year student; Richard Lewis Bloch Memorial Prize; Vena T. Carroll Award; Ethel Cram Memorial Prize Mary M. Doyle Memorial Prize, to a second-year student; Henry Dropkin Award, for excellence in graphic design; Dan Friedman Award; Betty Morton Goldin Memorial Prize; Rolf Haerem Award, to a fourth-year student for excellence in painting; Sarah
Mission Statement

THE IRWIN S. CHANIN SCHOOL OF ARCHITECTURE

The mission of The Irwin S. Chanin School of Architecture is to provide for its students the finest professional education available within an intellectual environment that fosters and expands their creative capacities and sensibilities and establishes the foundation for a productive professional life. The School is committed to the belief that one of society’s prime responsibilities is toward learning and education in the deepest sense: that the exercise of individual creativity within a willing community is a profoundly social act. Fundamental to the mission of the School is the maintenance of an atmosphere in which freedom of thought and exploration can flourish, where students can explore and utilize their special and individual talents, interests and modes of working, to their highest potential.
Aim s and Objectives The School of Architecture offers a five-year program leading to the bachelor of architecture, a first professional degree accredited by the NAAB. The architecture curriculum is designed to prepare students for a rich array of opportunities in the profession, offering a broad cultural and intellectual foundation in the liberal arts as they relate to the design of the environment at all scales. The discipline of architecture interpreted in the widest possible sense as a cultural practice is seen as a basis for a fully-rounded education at the undergraduate level. Students develop their knowledge and design skills within a framework of studios and courses that stimulate research and debate into the nature and role of architecture as a cultural practice with profound social and environmental implications.

The content of the curriculum, based on a wide cultural view of architecture, reflects broad ethical values. Faculty-student interaction is conducted on an intensive basis in the design studio and other classes. Within this framework faculty members encourage students to develop their individual interests and strengths, with a constant stress on fundamentals and a basic commitment intended to equip the graduate with a lasting ability to produce an architecture that is a meaningful synthesis of the social, aesthetic and technological. The relationship between architecture and other creative disciplines is stressed through the five years. Students are encouraged to express themselves both verbally and visually.

In a moment where the nature, role and scope of the architect is rapidly assuming new directions and dimensions in both the social and technological domains, the school emphasizes the principles of design and their underlying human values, while preparing students to respond positively to change. The program seeks to engender a strong sense of the responsibilities of service and leadership, team-work and individual creativity essential to the development of principled professionals dedicated to interpreting and constructing the spatial needs of the community.

The five-year design sequence is carefully structured to introduce the student to the principles of architectonics, the investigation of program and site, structures and environmental and building technologies, in a comprehensive and integrated curriculum. The studios comprise an introduction to the basic elements of form, space and structure; complex institutional design problems in their urban context; and a year-long thesis that demonstrates the student’s ability to synthesize a comprehensive understanding of architecture in society. The traditional and essential skills of drawing, modeling and design development are complemented by a full investigation of the analytical and critical uses of digital technology. The study of world architecture and urbanism is deepened by the understanding of individual cultures, environmental and technological issues at every scale. The theory of the discipline, past and present, is investigated through the close analysis of critical texts and related to the theory and practice of other arts, such as public art, film and video. The position of the School of Architecture, together with the Schools of Art and Engineering and the Faculty of Humanities and Social Sciences, offers a unique opportunity for interaction and interdisciplinary research and experience.

The Cooper Union’s location in New York City in the heart of downtown Manhattan provides a stimulating professional, social and cultural context for the education of an architect and an urban laboratory for the study of design in society. The numerous cultural institutions of the city provide an inexhaustible resource for research and experience outside the studio and classroom. The school’s faculty includes nationally and internationally recognized architects; the school’s diverse student body consists of highly talented and motivated individuals and its distinguished alumni are leaders in architecture and related fields.
The Irwin S. Chanin School of Architecture offers a five-year program leading to the bachelor of architecture degree. The degree requirements are intended to provide students with a rigorous training in and exposure to the creative and technical aspects of architecture. The professional courses in the curriculum are supplemented and enhanced by required courses both within and outside the discipline of architecture. The requirements are as follows:

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>Arch 111 Architectonics</td>
<td>4</td>
</tr>
<tr>
<td>FA100R Introduction to Techniques</td>
<td>1</td>
</tr>
<tr>
<td>Arch 114 Freehand Drawing</td>
<td>3</td>
</tr>
<tr>
<td>Arch 115 History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>Arch 118 Computer Applications and Descriptive Geometry</td>
<td>2</td>
</tr>
<tr>
<td>Literary Forms and Expressions</td>
<td>-3</td>
</tr>
<tr>
<td>Texts and Contexts</td>
<td>-3</td>
</tr>
<tr>
<td>Total Credits First Year</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year	
Arch 121 Design II	5
Arch 122 Structures I	2
Arch 125 History of Architecture II	3
Ma 163-4 Calculus and Analytic Geometry	3
Ph 165-6 Concepts of Physics	2
The Making of Modern Society	3
The Modern Context	-3
Total Credits Second Year	18

Third Year	
Arch 131 Design III	5
Arch 132 Structures II	2
Arch 134 Environmental Technologies	3
Arch 135 Building Technology	2
Electives*	3
Total Credits Third Year	15

Fourth Year	
Arch 141 Design IV	5
Arch 142 Structures III	2
Arch 143 Construction Management	1
Arch 153 Town Planning	2
Electives*	6
Total Credits Fourth Year	16

Fifth Year	
Arch 151 Thesis	6
Arch 152 Structures IV	2
Arch 154 Professional Practice	1
Arch 205/225 Advanced Concepts/Topics	2
Electives*	4
Total Credits Fifth Year	15

| **Total Credit Requirement for B.Arch. Degree** | 160 |

*The elective component for bachelor of architecture candidates can be fulfilled by elective courses in areas such as humanities and social sciences, visual arts, mathematics and science and languages. Approval for these elective courses must be granted by the appropriate academic faculty. A minimum of six elective credits must be taken in the humanities and social sciences.

Credits Only those students who are officially registered in a course (i.e., by approval of the dean of the School of Architecture or a faculty adviser and notification of the Office of Admissions and Records) will have grades and credits entered on their records.

Satisfactory Progress Toward Degree The bachelor of architecture degree program is a rigorous course of study that seeks to prepare students intellectually and professionally for the investigation and making of architecture. The privilege of studying at The Cooper Union, with the added benefit of a full-tuition scholarship for all admitted students, brings with it certain responsibilities. For students in the School of Architecture, these responsibilities include meeting the requirements of a demanding professional curriculum. All students who accept our offer of admission are expected to fully commit themselves to completing the degree requirements in accordance with the curriculum, which has been designed with great attention to sequence, prerequisites and the relationships between course work and the goals of each design studio. All classes that comprise the curriculum are essential to the education of an architect, and must be successfully completed by each student in the order intended.

Students admitted as freshmen will complete the program in five years; transfer students will complete the program in accordance with their placement in the design sequence.

Students who do not successfully complete required courses as outlined in the curriculum will not be permitted to advance to the next year of study until the missing requirement(s) is/are completed. Since make-up classes are not offered at The Cooper Union, missing requirements may need to be fulfilled through coursework taken outside Cooper Union. The intention to complete requirements outside Cooper Union requires a meeting with the appropriate academic adviser or faculty member in order to obtain advance approval of the potential substitute course, and to confirm the minimum grade required in order for transfer credit to be awarded. It is the responsibility of the student to locate an eligible course at a college/university that allows part-time/summer study, which will be taken at the student’s expense. It is in the best interest of each student to complete their coursework here at Cooper Union in conformance with the approved curriculum.

Students must pass a sufficient number of credits each semester to complete their degree requirements within five years of study. When dropping or adding courses, a student must follow all degree requirements.

The normal course load is 16–19 credits per semester. Students are required to be registered for a minimum of 12 credits per semester. Failure to maintain satisfactory progress toward the degree may be grounds for dismissal.
Students are eligible to register for more than 18 credits per semester, but not more than 20, if they have received at least a 3.0 rating for the previous semester.

Transfer Credit
Incoming students who have completed college-level academic work outside Cooper Union may be eligible to receive transfer credit. Approval of transfer credit will be made by the appropriate dean or faculty based on transcripts from other schools and additional materials, including a course description, a course syllabus with topics and course requirements, a reading list and any quizzes, examinations, papers or projects, etc. that demonstrate the level, content and requirements of the course, as well as the student's proficiency with the course topics. If necessary, a proficiency/placement exam may be administered in certain subject areas. Transfer students must be prepared to present these and other requested materials for each course for which transfer credit is sought. Transfer credit evaluation must be completed by the end of the first semester of study.

When admitted, transfer students are offered admission into a particular year of the five-year design sequence. This decision is final, and acceptance of the offer of admission represents agreement on the part of the admitted student with this decision. It will be necessary for the matriculating transfer student to successfully complete the design studio to which he/she is admitted, as well as all subsequent studios, as part of their degree requirements. The official academic transcript of a transfer student will be reviewed prior to the student’s first registration. This review will determine what, if any, additional coursework may be eligible for transfer credit.

Any credits or coursework below the minimum established for a given year of a student’s curriculum must be made up in summer courses at other schools (these courses to be approved by the dean) at the student’s personal expense. Students making up courses in this manner will be permitted to register for Cooper Union classes in September only after the Office of Admissions and Records receives a transcript showing the successful completion of these courses.

Currently enrolled students who find it necessary to complete degree requirements at another institution for transfer credit to Cooper Union must have appropriate advance approval.

Credit may be granted for work done at another institution by any student upon examination by the dean. This credit is to be recorded after satisfactory completion of one semester’s work at Cooper Union.

Grades used, with their numerical equivalents, are: A (4.0), A- (3.7), B+ (3.3), B (3.0), B- (2.7), C+ (2.3), C (2.0), C- (1.7), D+ (1.3), D (1.0), D- (.7), F (0). The assigned numerical equivalents are used in computing semester and annual ratings by multiplying the numerical equivalent of the grade for each subject by the credits assigned to the subject. The sum of such multiplications for all the subjects carried by a student is divided by the total credits carried by him/her for that period to determine the average rating.

The official meanings for letter grades are as follows:

- **A** Outstanding performance
- **B** Above average performance
- **C** Requirements satisfactorily completed
- **D** Minimum requirements met; passing but unsatisfactory
- **F** Failure to meet the minimum requirements of a subject

The designation **I** indicates that the work of the course has not been completed and that assignment of a grade and credit has been postponed. An I designation is permitted only in cases of illness (confirmed by a physician's letter) or documentation of other extraordinary circumstances beyond the student’s control.

The deadline for removal of an I designation will be determined by the instructor and recorded at the time the designation is given, but will not be later than two weeks after the start of the next semester. If the I is not removed within the set time limit, either by completing the work in the subject or by passing a reexamination, the I will automatically become an **F** unless the dean of the School of Architecture extends the time or the student withdraws from school.

The designation of **I** will be granted only with the approval of the dean.

W The student has received permission from the instructor and the dean of the School of Architecture and has withdrawn from a course while passing the course requirements at the time of withdrawal. This permission must be obtained before the end of the sixth week of the semester. The grade is not included in the calculation of the student’s semester rating but remains on the student’s transcript. (See Change of Program: Withdrawing from a Course, p.34.)

WF The student has received permission from the dean of the School of Architecture and the instructor and has withdrawn from a course while failing the course requirements at the time of withdrawal. This permission must be obtained before the end of the sixth week of the semester. This grade is included in the calculation of the student’s semester rating, its numerical equivalent is 0, and it remains on the student’s transcript. (See Change of Program: Withdrawing from a Course, p.34.)

When appropriate, certain courses may be designated as **Pass/Fail** courses.
Pass Requirements completed. This designation is not included in the calculation of the student’s semester rating.

Fail Failure to meet the minimum requirements of a course. This grade is included in the calculation of the student’s semester rating; its numerical equivalent is 0.

Academic/Final Probation A semester rating below 2.0 and/or a grade less than C in Architectural Design (or Architectonics) places a student on automatic probation and may be the basis for final probation or dismissal, as determined by the Academic Standards Committee.

A second probation may result in final probation or the dismissal of the student. The Academic Standards Committee may place a student on final probation.

A student on final probation who receives a semester rating below 2.0 and/or a grade less than C in Architectural Design (or Architectonics) at any point in the remainder of his/her academic career in the School of Architecture will be immediately, automatically and permanently dismissed from Cooper Union with a forfeit of the right of appeal. Automatic dismissal on final probation unconditionally and irrevocably terminates a student’s academic career in the School of Architecture.

A student on probation may not carry more than 18 credits a semester.

Each student is responsible for his/her total accomplishment and for being continuously aware of the standards defined in the preceding paragraphs. Students whose records by mid-semester indicate a possible failure to meet minimum standards may be so informed.

A student must have a cumulative grade point average of 2.0 or better in order to graduate from The Irwin S. Chanin School of Architecture.

Any student who fails Arch 151 (Thesis) twice will be dropped automatically from the program.

Change of Grade A change in an official grade of record cannot be made by the dean of Admissions and Records without the express consent of the dean of the School of Architecture. The dean of Admissions and Records will automatically convert an I designation to an F if an official Change of Grade is not submitted within the two-week deadline after the start of the following semester. Grade changes will not be accepted after one year has elapsed from the completion of the course.

Change of Program: Adding a Course Students are permitted to add a course only during the first two weeks of a semester, during the drop/add period. They must receive the approval of the dean and must report the addition to the Office of Admissions and Records.

Change of Program: Withdrawing from a Course Students may withdraw from a course with appropriate written permission by notifying the Office of Admissions and Records during the first two weeks of a semester, during the drop/add period. A grade of the course from the student’s record. Students are not permitted to withdraw from courses if doing so would impede satisfactory progress towards degree. Withdrawal from a course during the drop/add period must be accompanied by an addition of equivalent credits in another course in order to maintain satisfactory progress toward the degree.

Students who wish to drop a course after this deadline must first receive permission from the dean. If the student is passing the course at the time of withdrawal, a designation of W will appear on his/her record. If the student is failing the course at the time of withdrawal, a grade of WF will be recorded. It is the student’s responsibility to obtain the necessary permission from the school and to submit proper notification to the Office of Admissions and Records in order to withdraw from a course.

Students are not permitted to withdraw from a course after the sixth week of the semester. Failure to attend a class does not constitute withdrawal. Students are not permitted to withdraw from a class as a means of avoiding a failing grade.

Change of Program: Change of Section Students are permitted to transfer from one section to another of the same course before midterm if they are passing the course at that time. Permission of the dean is required for the change of section.

Leave of Absence Students who have completed at least one year of study and need to interrupt their studies may be granted a leave of absence for up to one year by permission of the dean. Only students in good academic standing and making satisfactory progress toward the degree may request a leave of absence. A meeting with and permission from the dean of the School of Architecture is necessary.

Medical Leave of Absence Students who are forced to interrupt their studies for medical reasons must submit with their request for reinstatement an opinion from the student’s physician or therapist. Cooper Union reserves the right to require a second opinion by a physician of its choosing.

Interim Year/Independent Study Architecture students in good standing and making satisfactory progress toward the degree may elect to interrupt their studies at Cooper Union for a period of one year for purposes of study or travel. This Interim Year option is available to architecture students who have completed at least one year of study at Cooper Union. A meeting with and permission from the dean of the School of Architecture is necessary.
Students who intend to accomplish academic credit outside Cooper Union while on an Interim Year must consult with the dean to plan an appropriate program in affiliation with another institution. Credit will only be considered upon the student’s return and after review of his/her portfolio and appropriate academic documentation.

Readmission Students who have withdrawn from the School of Architecture and have completed at least one year of study at Cooper Union must reapply to the school to be considered for readmission in competition with transfer applicants.

Students who have withdrawn from school before they have completed one year of study at Cooper Union must reapply through the freshman admission procedure.

Students who have been dismissed for academic deficiencies and are eligible for readmission must apply within two years to the chairman of the Academic Standards Committee before May 15 for admission in September and before November 15 for admission in January. They should be prepared to demonstrate a change from the circumstances that warranted their dismissal.

Former students who have been dismissed due to academic deficiencies and who have been out of Cooper Union for more than two years (four semesters) at the time of anticipated return must apply through the regular admission procedure. If offered admission, previous Cooper Union credits earned may be evaluated for transfer credit.

Residence A candidate for a degree must be enrolled during the entire academic year immediately preceding the granting of the degree and in residence during the last semester.

Graduation To be eligible for graduation, a student must complete the minimum number of credits listed for his/her curriculum and must spend a minimum of four semesters in full-time resident study at Cooper Union.

Students are responsible for their total accomplishment and for being continuously aware of the standards for graduation.

Graduation requirements as outlined in this catalog are guidelines that are subject to change.

Master of Architecture II

Post-Professional Degree Curriculum

Aims and Objectives In spring 2006, the School of Architecture registered a new master of architecture II program with the State Education Department of the University of the State of New York. This new post-professional degree program will extend the vision and intellectual rigor of the undergraduate program and allow a further development of the school’s preeminent position in the education of architects.

The master of architecture (M.Arch. II) is a design research, post-professional degree open to applicants with a first professional degree in architecture (bachelor of architecture or master of architecture I) from a program accredited by the NAAB or equivalent accrediting agency in another country. The program will serve professionals who wish to continue in practice with higher research and design skills in those areas in which the program offers specialization. It will additionally prepare those with first professional degrees who wish to develop parallel careers in teaching and/or continue to engage in research toward an appropriate Ph.D. degree at another institution.

The program seeks to address modern and contemporary issues in the practice and theory of architecture and urbanism, incorporating considerations from history as well as the present condition of globalization and the continual emergence of new scientific developments and technologies.

The program will offer concentrations in one or a combination of three areas: theory, history and criticism of architecture, urban studies and technologies. Students will declare their area(s) of concentration during the application process. Applicants are required to complete a minimum of two years of work experience after obtaining their first professional degree before applying to the program.

The design studio will be a major component of the program; students from all three concentrations will work together on a common program under the direction of a studio critic during the first two semesters. Seminars will address issues particular to the concentrations as well as other topics making use of the interdisciplinary resources offered by Cooper Union.

Theory, History and Criticism of Architecture This area will concentrate on questions concerning the theory and criticism of modernism and contemporary architecture, the philosophy and aesthetics of architecture, the mediatization of architecture and broader cultural and historical issues through the critical readings of texts as well as research through studio work.

Urban Studies This area will concentrate on issues central to the design, planning and development of cities and regions, including study of the morphological, social and cultural effects of globalization; the survival of local urban cultures; redevelopment of central cities, suburbs and exurbs; and issues specific to New York and comparative cities.
Technologies This area will concentrate on technological issues of architectural design, representation, planning and production, such as the impact of new information technologies, new materials and manufacturing processes; hardware and software development; mapping and modeling techniques; and the technologies of fabrication as they influence new design strategies. This area will focus as well on the economic, ethical and technological dimensions and design potentialities of sustainability and developments in new structural systems, materials and building assemblies.

Program Requirements All admitted M.Arch II students must have previously obtained a bachelor of architecture or a masters of architecture first professional degree from a school accredited by the NAAB or equivalent accrediting agency in another country. The program is structured to be completed in two full-time consecutive semesters with a final thesis semester during the summer session. Final thesis presentations will take place during the first week of the fall semester following the student’s year of study. Graduate students are expected to complete all 30 credits of the M.Arch II degree requirements in full-time continuous resident study at Cooper Union.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester I (Fall)</td>
<td></td>
</tr>
<tr>
<td>Arch 411 Graduate Research Design Studio I</td>
<td>6</td>
</tr>
<tr>
<td>Arch 401 Proseminar</td>
<td>2</td>
</tr>
<tr>
<td>Seminar in concentration</td>
<td>2</td>
</tr>
<tr>
<td>Seminar out of concentration</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits First Semester</td>
<td>12</td>
</tr>
<tr>
<td>Semester 2 (Spring)</td>
<td></td>
</tr>
<tr>
<td>Arch 412 Graduate Research Design Studio II</td>
<td>6</td>
</tr>
<tr>
<td>Arch 402 Thesis Research Tutorial</td>
<td>2</td>
</tr>
<tr>
<td>Seminar in concentration</td>
<td>2</td>
</tr>
<tr>
<td>Seminar out of concentration</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits Second Semester</td>
<td>12</td>
</tr>
<tr>
<td>Semester 3 (Summer)</td>
<td></td>
</tr>
<tr>
<td>Arch 413 Graduate Thesis (written or studio)</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Requirement for M.Arch II Degree</td>
<td>30</td>
</tr>
</tbody>
</table>

Thesis In April of the spring semester prior to advancing to Arch 413 Thesis, each student will be required to present an elaboration of his/her thesis topic and program for review and acceptance by the faculty. Final thesis presentations will be made during the first week of fall semester following the student’s year of study.

Seminars Out of Concentration It is recommended that students register for courses originating in the graduate program (Arch 482, Arch 483 and Arch 485) to satisfy their out-of-concentration seminar requirements. As an alternative, the lecture component of elective courses originating in the undergraduate program at the advanced level (such as Arch 190 Structures Elective, Arch 225 Advanced Topics in History, Theory and Criticism, etc.) as well as Arch 205 Advanced Concepts, will be open to students in the graduate program for credit with tutorial meetings and with graduate-level requirements for written or project based work, to satisfy requirements for their out-of-concentration coursework.

The undergraduate curriculum course numbering system is structured such that a first digit of “2” or greater OR a second digit of “4” or greater indicates an upper level course, which students in the undergraduate program would normally take in their 4th or 5th year of study.

Graduate courses in the Albert Nerken School of Engineering as well as select upper level undergraduate elective courses could be made available to M.Arch. II students with prior permission from the student’s academic adviser and the individual course instructor. Undergraduate courses may be used to satisfy requirements for out-of-concentration coursework only.

First Entering Class Additional information for the first entering class of the M.Arch II (post-professional) degree, including application and admission requirements, will be available in September 2008. Please consult the Cooper Union web site (http://apply.cooper.edu) for additional information after September 2008.
Built upon Peter Cooper’s vision of education, The Cooper Union for the Advancement of Science and Art from its inception has been dedicated to the highest ethical standards. The School of Architecture, founded on principles of independent and exploratory thought, maintains that individual creativity within a willing community is a profoundly social act. In fostering a context of intellectual rigor, the program gives emphasis to a broad spectrum of cultural and ethical concerns which are of significance in the preparation of students for a professional degree and their role in society as practicing professionals of intelligence, creativity and integrity.

Authorship Acts of academic dishonesty are extremely serious violations of both the spirit and the substance of this community. The Academic Standards Committee of The Irwin S. Chanin School of Architecture will review acts of academic dishonesty including cheating, plagiarizing or the submission of work that has not been prepared by the person claiming authorship. Such acts are viewed as an extremely serious violation, punishable by probation, suspension or dismissal. The action of the Academic Standards Committee in such cases will become part of the student’s permanent academic record.

The Studios Central to maintaining a creative environment for intellectual investigation and intuitive exploration are the shared design and computer studio spaces on the third and seventh floors of the Foundation Building.

In the studios, students work together as a community of individuals. Here, students and faculty from all years engage in a process of rigorous inquiry, discussion and critique, freely sharing knowledge, ideas and methodologies. Students study the principles and works of architecture that have contributed to the betterment of the human condition in the development of their own projects. Students of the upper years serve as mentors for the lower years. Diversity and balance are critical values in generating an academic ambiance where humanistic ideals and ethical views serve as a constant reference for individual growth and development. The social and intellectual environment thus created is considered a vital part of the students’ experience at Cooper Union. Students are required to be present in studio for all hours that their design studio meets and to develop their work in the studio.

Students should be aware of and observe all policies and conditions for the use of the studios, including hours of access. Studio use policies and responsibilities are distributed at the beginning of each academic year.
The facilities of the School of Architecture are housed on the third and seventh floors of the Foundation Building, initially completed in 1859 and now a National Historic Landmark widely referred to as one of New York City’s grand monuments. In 1974, John Hejduk, the first dean of the School of Architecture, designed a major alteration of the interior; in 2002, the restoration of the brownstone exterior was completed.

The Studios All students in the School of Architecture are provided individual workspace on the third floor within a shared studio. With the first through fourth years sharing a single large studio and the fifth-year thesis class in more intimate individual spaces, a unique environment fostering cross-fertilization between classes and individual students is maintained. School of Architecture students have individual studio workspace with a full-sized drawing/drafting table as well as a small individual or larger shared work table for reference, model building, etc.

Computer Studio The School of Architecture has developed a computing facility on the seventh floor of the Foundation Building. It is specifically intended to support a design curriculum that recognizes the growing use of computing as an instrument of practice and which urges students to explore its formal and cultural implications. The facility now has both Macintosh and Dell Precision PCs (including a high-end multiple-processor rendering station), scanning and printing capabilities and a large-format plotter. Software includes an array of imaging, drawing, drafting and 3D modeling and rendering programs. This facility is open to all students of Cooper Union. Considered integral to the activities of the design studio, this computing facility is open whenever the design studios are open, giving students access an average of 17 hours a day. A student trained to assist in the effective use of the facility and to do simple troubleshooting on the hardware is present whenever the center is open.

In addition, computing facilities in the Schools of Art and Engineering are open for use by students of the School of Architecture.

Lecture Room A small auditorium on the third floor is used for lecture classes and invited lecturers. Special lectures are open to all interested Cooper Union students.

Shop An outstanding all-college sculpture shop administered by the School of Art is located on the fourth floor. Integral to both the program and pedagogy of the School of Architecture, the shop is equipped for projects in wood, metal, plastics, plaster and clay, and includes a bronze casting foundry. For a complete description of the sculpture shop facility, please refer to the School of Art section (page 50).

Study Collection The School of Architecture has fostered the growth of a non-circulating Study Collection of books and other visual material that are not otherwise accessible through the Cooper Union library system, sometimes including rare or limited edition items, often on loan from private collections. Students make use of the room for quiet reading and study. The room can also be used for small seminar meetings.

School of Architecture Archive The Archive is responsible for the ongoing collection, documentation and storage of student work, and now has a record of student work produced at the school since 1983, an invaluable record of the pedagogy of the school used for exhibitions, publications and student research. In addition, the Archive’s Blueprint Collection, Lantern Slides, New York Postcard Collection, Stanley Prowler Slide Collection and New York City Waterfront Archive are resources available for use by students and faculty for research and study. The Archive also manages the loan of analog and digital video cameras as well as still cameras for student use on class projects.
Courses

Students should consult official class lists for courses offered in a given semester. There is no assurance that a course listed in this catalog will be given every year. Be advised that each school offers certain electives that are open to all students; consult each school’s course listing.

Undergraduate

Design (Required)
All Architectonics students are required to take an Introduction to (Shop) Techniques course.
1 credit

Arch 111 Architectonics
Introduction to the study of architecture: investigation of the interrelationships of space, structure and visual composition. Exploration of the syntax of architecture. Models and orthographic drawing.
4 credits

Arch 121 Design II
Projects comprise elemental architectural programs wherein the student is required to sustain the formal investigations of first year while integrating the complexities of program, context and site. Spatial, structural, material, environmental and visual design are integrated. Emphasis is placed on communicating concepts through drawings and models.
5 credits

Arch 131 Design III
Study and analysis of historical precedents followed by a sequence of design problems of increasing complexity. Emphasis on the planning of buildings and the interrelationships among form, structure, detail and technologies.
5 credits

Arch 141 Design IV
Investigation of urban programs and sites requiring the integration of form, structure and space. Examination of the complexities implicit in the resolution of urban problems. Analytic studies and explorations generate specific programs for development of each project. Emphasis given to large-scale integrations and the impact of urban transformations upon existing fabric.
5 credits

Arch 151 Thesis
A synthesis of four years’ educational experience. The choice of the area of study is the responsibility of the student. The scope of the problem is defined by each student, who also decides on his/her method of exposition. Problems are analyzed and studied with the aid of faculty from each discipline and by visiting critics.
6 credits

Structures (Required)

Arch 122 Structures I
A qualitative examination of the behavior of structures. Characteristics and development of the stresses generated from the simple to the complex. A study of the materials of construction used in structures.
2 credits

Arch 132 Structures II
The study of strength of materials is applied to the quantitative design procedures for wood and steel structures. Students complete individual projects in wood and low-rise steel structures.
2 credits. Prerequisites: Ma 163/164, Ph 165/166, Arch 122 Structures I

Arch 142 Structures III
The design of reinforced concrete using stress methods and plastic design is combined with individual projects in low-rise concrete structures. Elements of soil mechanics and soil investigations are included (fall only) in foundations design.
2 credits. Prerequisite: Arch 132 Structures II

Arch 152 Structures IV
Intensive seminars are completed on prestressed concrete, wind and earthquake design for tall structures and special structures, while the student becomes the structural consultant for individual assignments for the structural solution of real architectural projects covering prestressed, high-rise steel and concrete buildings and shells.
2 credits. Prerequisite: Arch 142 Structures III

Environmental Technologies (Required)

Arch 134 Environmental Technologies
Environmental and life safety systems as they affect program and building form, including mechanical (heating, cooling, ventilating), water supply and disposal, electrical, lighting, acoustics, vertical transportation, communication, security and fire protection. Principles of sustainability. Passive and active systems.
3 credits

Building Technology (Required)

Arch 135 Building Technology
Materials and methods of architectural construction, lectures, examination and discussion of classic as well as current building techniques. Students assemble full-size “mock-ups” of details for class study germane to their design classes. In general, this course does not separate “construction” from “design” but attempts to supplement, by means of a more detailed study of design assignments. Field trips may be made to buildings under construction.
2 credits

Drawing (Required)

Arch 114 Freehand Drawing
Basic drawing skills, composition and color perception. Studio and homework assignments.
3 credits

History of Architecture (Required)

Arch 115 History of Architecture I
(Sem. I) An introduction to the study of the concepts, designs and built examples of architecture from antiquity through approximately the third century C.E. Selected projects from throughout the world will be analyzed in terms of planning, design, structure, technique, function, social context and meaning.
3 credits

Arch 115 (Sem. II) An introduction to the study of the concepts, designs and built examples of architecture from approximately the fourth through the 15th century. Selected projects from throughout the world will be analyzed in terms of planning, design, structure, technique, function, social context and meaning.
3 credits

Arch 125 History of Architecture II
(Sem. I) An introduction to the study of the concepts, designs and built examples of architecture from approximately the 15th through the 18th century. Selected projects from throughout the world will be analyzed in terms of planning, design, structure, technique, function, social context and meaning.
3 credits

Arch 125 History of Architecture II
(Sem. II) An introduction to the study of the concepts, designs and built examples of architecture from approximately the 15th through the 18th century. Selected projects from throughout the world will be analyzed in terms of planning, design, structure, technique, function, social context and meaning.
3 credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch 125 (Sem. II)</td>
<td>An introduction to the study of the concepts, designs and built examples of architecture from approximately the 18th through the 20th century. Selected projects from throughout the world will be analyzed in terms of planning, design, structure, technique, function, social context and meaning. 2 credits</td>
</tr>
<tr>
<td>Arch 153 Town Planning</td>
<td>A modernist response to the problems of large metropolitan cities. Taking a historical perspective, the course will analyze town planning responses of specific architects and groups for cities such as Paris, London, New York, Vienna and Chicago, questioning the cultural determinants that made town planning a modernist stance. 2 credits</td>
</tr>
<tr>
<td>Professional (Required)</td>
<td></td>
</tr>
<tr>
<td>Arch 118 Computer Applications and Descriptive Geometry</td>
<td>Descriptive geometry as a science of graphical representation of three-dimensional lines, surfaces and solids with emphasis on development of drawing and drafting skills. Understanding how graphical and construction information is represented in the computer, how information is represented in drawings, nature of the overlap between the two. Develop a critical facility to appreciate limitations and strengths of representational techniques. Computer as a mechanism for communication and research. 2 credits</td>
</tr>
<tr>
<td>Arch 143 Construction Management</td>
<td>Introduction to construction management principles, techniques and methods including scheduling, cost-estimating, planning and controlling construction process. 1 credit</td>
</tr>
<tr>
<td>Arch 154 Professional Practice</td>
<td>The role of the architect in relation to the community, client, builder, worker and engineer. Societal, ethical, legal and personal obligations. Office organization and administration. 1 credit</td>
</tr>
<tr>
<td>Elective Courses</td>
<td></td>
</tr>
<tr>
<td>Arch 165 Analysis of Architectural Texts</td>
<td>Introduction to analytical methods and techniques and their relationship to synthetic activity in the design process. 2 credits. Prerequisite: permission of instructor</td>
</tr>
<tr>
<td>Arch 175 Modern Architectural Concepts</td>
<td>The concepts and generators of form and space relative to architecture of the 20th century are explored and investigated. 2 credits. Prerequisite: Arch 115 History of Architecture I, Arch 125 History of Architecture II or permission of instructor</td>
</tr>
<tr>
<td>Arch 176 Theory of Landscape Architecture</td>
<td>Lecture/studio course explores the interrelationships of nature, site design and built form. Focus on basic elements of nature addressed ideologically, poetically, culturally and practically through an interdisciplinary study of works by selected artists, writers, landscape architects and architects. Work with landscape fundamentals, continue on to more complex issues of natural processes and aesthetics, such as atmosphere, ephemerality and time, and of site planning, such as site selection, topography, drainage, ecology and climate, especially as related to architecture and art in the land. Redefine relationship between humanity and nature. Independent, visceral searches as starting points for design, using methods that cross boundaries traditionally separating, art, architecture and landscape architecture, in an attempt to dismantle stereotype and to probe new ground. 2 credits. Open to all students</td>
</tr>
<tr>
<td>Arch 177 Computer Graphics, Image Processing and Vision</td>
<td>Introduction to basic concepts of spatial description and manipulation by computer enables student to use these techniques as an aide in problems of formal spatial drawing with a computer. Examination of the issues of “hand-eye axis” in computer-based drawing and “paint” systems as well as more abstract algorithmic methods of drawing. Image acquisition and transformation by computer, its relation to computer vision and control of robots and machines which build will be another area of emphasis. Survey of a wide variety of applications including typeface design, page layout and make-up, animation and interactive control of video systems. 2 credits. Open to all students</td>
</tr>
<tr>
<td>Arch 178 Advanced Drawing Seminar</td>
<td>The course will focus on the dialogue between figuration and abstraction. Students will be expected to plan and elaborate an ongoing series of drawings. The class will meet on a seminar basis to critique work in progress and to discuss issues relevant to the language of drawing. There may be an open studio available for those students who wish to pursue drawing from the model. However, students will be encouraged to investigate a broad spectrum of imagery and materials. 2 credits. Prerequisite: permission of instructor</td>
</tr>
<tr>
<td>Arch 185 Crossings</td>
<td>This project-oriented studio course will explore and investigate developments in architecture, art, literature and engineering that reinforce or reintroduce the interrelationships of these diverse disciplines including the implications of recent scientific developments that cross and disrupt established boundaries and foundations of compartmentalized disciplines, giving us new insights into the natural processes within the rich diversity of nature. A revitalized and stimulating uncharted field of inquiry is now offered to architects, artists and engineers, with technological and cultural implications. 2 credits. Prerequisite: permission of the instructor</td>
</tr>
<tr>
<td>Arch 190 Structures Elective</td>
<td>The reason for the unique structural solutions for existing building structures is presented in depth. These studies will include structures of all sizes subject to gravity, wind and/or seismic forces. The path followed to arrive at the best solution is analyzed in open discussion. The correlation between the architectural, structural and mechanical needs, as well as considerations related to the actual erection of these structures, is presented. 2 credits. Prerequisites: Arch 122, Arch 132, Arch 142, Arch 152 or permission of the instructor</td>
</tr>
<tr>
<td>Arch 194 Environmental Technologies Elective</td>
<td>Advanced study in environmental issues to include such topics as cultural and environmental sustainability, resource allocation, new materials and methods, global networks, urban growth, etc. as they relate to architecture on many scales.</td>
</tr>
</tbody>
</table>
Arch 300 Computer-Aided Design and Descriptive Geometry
Architecture-specific exploration into perception, methods and conventions of the geometric representation of space through the new perspective of computer applications. Introduction to concepts of projections, hinge and projector lines as well as absolute and relative coordinate systems through local deduction by considering parallel, axial, radiant and stereoscopic projections as variations of the same system. Introduction of CAD specific methods such as Solid, NURBS and Parametric Modeling, hierarchical- and command-based programs. Critical comparison of computer capabilities and architectural tangible scale modeling methods to understand possibilities and limitations of computer-aided design in architecture. Critical exploration of methods and media for representation and design of specific works of architecture. 2 credits. Open to all students.

Arch 401 Proseminar
An introduction to research in architecture and urbanism: theory, research (methods and techniques) and writing, for M.Arch. II degree students only. Selected readings in historiography, theory, criticism and design and methods. Includes lectures and seminars by faculty and visiting specialists in the fields of history and criticism, architecture and urban design methods, research in representational techniques, digital technology, etc. Presentations by each student in the program will encourage interdisciplinary comparison and shared knowledge. 2 credits

Arch 402 Thesis Research Tutorial
Individual thesis research conducted under the supervision of an adviser or advisers leading to the preparation of a Thesis Prospectus required for advancement to the third semester of the program. 2 credits

Arch 411 Graduate Design Research Studio I
The Design Research Studio I will establish a general problem incorporating aspects of architectural, urban and technological design research to be undertaken by the class, with each student contributing to their specific area of expertise. The studio will include seminars by invited guests on topics relevant to the program’s principal areas of study. 6 credits

Arch 412 Graduate Design Research Studio II
Individual design projects within general guidelines established by the faculty, each emphasizing the special area(s) of research of the student. 6 credits

Arch 413 Graduate Thesis
The choice of the area of study is the responsibility of the student. The scope of the project and method of exposition is defined by each student in consultation with their thesis adviser and must be approved prior to the beginning of the summer term on the basis of a thesis prospectus presented to the group of faculty. Students will develop a mutually agreed upon schedule for meetings with their adviser and for regular project reviews. 6 credits

Arch 485 Graduate Seminar in Theory, History and Criticism of Architecture
Selected topics in the advanced study of the theory and criticism of modernism and contemporary architecture, the philosophy and aesthetics of architecture, the mediatization of architecture and broader cultural and historical issues, through the critical readings of texts as well as case studies. 2 credits

Arch 483 Graduate Seminar in Urban Studies
Selected topics in the advanced study of urban form including readings and case studies in urban analysis, global development, historic preservation and typological transformation. 2 credits

Arch 482 Graduate Seminar in Technologies
Selected topics in the advanced study of technological issues in architectural design, representation, materials, planning, production and construction. 2 credits
Administration

Anthony Vidler, Dean; Professor
B.A., Dip.Arch.,
Cambridge University;
Ph.D., Delft University of Technology
(The Netherlands)
Elizabeth O’Donnell, Associate Dean
Monica Shapiro,
Administrative Associate
Pat De Angelli, Secretary
Emmy Mikelson, Assistant to the Deans for Public Programs and Research
Steven Hiltyer, Director,
Architecture Archive
Barbara Choit, Collections Assistant,
Architecture Archive
Sara Jones, Special Projects Assistant,
Architecture Archive

Full-Time Faculty

Professors
- Diana I. Agrest
 Dipl. Arch., School of Architecture and Urbanism, University of Buenos Aires;
 Université de Paris: Ecole Pratique des Hautes Etudes VI Section
 R.A.
- Diane H. Lewis
 B.Arch., The Cooper Union;
 The American Academy in Rome
 R.A.
- Ysrael A. Seinuk
 Degree in Civil Engineering, University of Havana
 P.E., F.A.C.I., C.Eng., F.I.C.E.,
 F. A. S. C. E.

Associate Professors
- Tamar Zinger
 B.Arch., The Cooper Union;
 M.S.C., Technion-Israel Institute of Technology;
 M.A., Ph.D., Princeton University
- Michael Young
 B.Arch., California Polytechnic Institute;
 M.Arch., Princeton University
- D. Graham Shane
 M.Arch., Ph.D., Cornell University
- David Shapiro
 B.A., Ph.D., Columbia University;
 B.A., M.A., University of Cambridge (England)
- Richard Stapleford
 B.A., Duke University;
 M.A., Ph.D., New York University,
 Institute of Fine Arts
- Michael Webb
 Diploma, Regent Street Polytechnic (England)
- Stephen Ruthow
 B.A., University of Rochester;
 M.Arch., M.G.P., Massachusetts Institute of Technology
 R.A., N.C.A.R.B.
- Sean W. Scully
 B.A., Harvard University;
 B.Arch., Columbia University
 R.A.
- David Turnbull
 B.A. Honors, Dip.Arch., University of Bath (England)
- Lebbeus Woods
 University of Illinois; Purdue University
- Guido Zuliani
 Diploma (M.Arch.), Istituto Universitario d’Architettura di Venezia, Italy
- George Ranalli,
 R.A.
- Ysrael A. Seinuk,
 R.A.
- Michael M. Samuelian
 B.Arch., The Cooper Union;
 M.Arch., Harvard University
 R.A., N.C.A.R.B.

Assistant Professors
- Felecia Davis
 B.S., Tufts University; The Architectural Association (England); M.Arch., Princeton University
- Hayley Eber
 B.A.S., The University of Cape Town;
 B.Arch., The Cooper Union; M.Arch., Princeton University
- Louis Katzos
 B.C.E., M.B.A., New York University
- Sheng Shi
 B.Sc., M.S.S.E., Drexel University
- Joan Waltemath
 B.F.A., Rhode Island School of Design;
 M.F.A., Hunter College, CUNY
- Georger Windeck
 Dipl.Ing., Technical University of Berlin
- Suzan Wines
 B.Arch., The Cooper Union
 R.A.
- Samuel M. Anderson
 A.B., Harvard College; Sussex University (England); B.Arch., The Cooper Union
 R.A.
- Ashok Rajii
 B.Sc., University of Bombay (India);
 B.S., M.S., Texas A&M University; P.E.
- Peter Schubert
 B.S.Arch., Ohio State University;
 M.Arch., Columbia University
 R.A.
- D. Graham Shane
 M.Arch., Ph.D., Cornell University
- Pablo Lorenzo-Eiroa
 Dipl. Arch., University of Buenos Aires;
 Escuela Superior de Bellas Artes
 Ernesto de la Carcova (Argentina);
 M.Sc., Columbia University
- Jane Lea
 B.A., Barnard College; M.Arch.,
 Columbia University
- Anthony Titus
 B.Arch., The Cooper Union;
 M.F.A., University of Chicago
- Mersiha Veledar
 B.Arch., The Cooper Union;
 M.Arch., Princeton University
- Michael Webb
 Diploma, Regent Street Polytechnic (England)
- Felecia Davis
 B.S., Tufts University; The Architectural Association (England); M.Arch., Princeton University
- Anthony Vidler,
 R.A., N.C.A.R.B.
- David Geister
 B.Arch., Columbia University
 R.A., N.C.A.R.B.
- Ashok Rajii
 B.Arch., The Cooper Union;
 M.Arch., Harvard University
 R.A., N.C.A.R.B.
THE COOPER UNION
SCHOOL OF ART

The mission of the School of Art is to educate artists in the broadest sense, both as creative practitioners engaged with a wide range of disciplines in the visual arts and as enlightened citizens of the world who are prepared to question and transform society. The program is structured around an integrated curriculum that fosters connections between disciplines, as well as between traditional and new media. The studio experience affords the opportunity for the development of individual artistic vision in dialogue with collective debates and experiments within an intimate community of artists. The study of history, theory and criticism in the visual arts and general studies in the humanities and social sciences are considered essential in intellectually grounding studio practice. Central to the school’s philosophy is the advancement of the artist’s role in initiating critical responses and alternative models in relation to the prevailing forms and institutions of cultural production. Students are challenged to expand their research and experimentation across The Cooper Union, as well as in the surrounding urban environment and in the wider public sphere.
Goals and Objectives The goal of the B.F.A. program is to educate students in the skills, knowledge and understanding necessary for professional practice in art- and design-related fields. An integrated program not only teaches students in specific disciplines, but also in the complex interrelation of all visual vocabularies.

The Foundation Program consists of a series of prerequisite courses taken during the first year. This introductory year is designed as a basis for the educational program of the School of Art and is intended to prepare students for studies in all of the disciplines offered within the curriculum. Through exposure to a variety of two- and three-dimensional projects, students are given a general introduction to the specifics of visual and spatial phenomena, and to concepts, principles and techniques of the visual arts.

Following the completion of the Foundation Program, the disciplines of concentration are drawing, film and video, graphic design, painting, photography, printmaking and sculpture. Elective studio classes and seminars are also offered on a rotating basis. Students may choose to concentrate in one or more areas of specialization and are encouraged to follow an integrated approach by selecting from various areas while observing a prerequisite system designed to allow in-depth study in specific disciplines.

Bachelor of Fine Arts Requirements Candidates for the bachelor of fine arts degree are expected to complete 130 credits within eight semesters of study and within the following disciplinary credit distribution. (See chart at right.)

Certificate in Art Requirements A certificate in art program is available for a small number of students for whom the B.F.A. program is not appropriate. Candidates for the certificate program must complete 60 credits in two years of full-time study (with a minimum of 30 credits per year) or in four years of part-time study (with a minimum of 15 credits per year). All Foundation studio courses must be completed and students must follow prerequisite course requirements in selecting advanced studio electives.

The certificate program consists of 24 credits in Foundation studio and a minimum of 27 credits in advanced studio. Students may take up to nine credits in art history.

All academic standards and regulations of the School of Art apply to the certificate program.

Students in the certificate program may apply through the Office of Admissions for transfer to the B.F.A. program after completing 42 credits at Cooper Union.

Transfer students applying to the certificate program may transfer, at the time of admission, a maximum of 12 credits from another institution.

For Students who entered on or after September 2008

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Foundation Studio Courses</td>
<td></td>
</tr>
<tr>
<td>Basic Drawing (Analytical and Descriptive)</td>
<td>6(^1)</td>
</tr>
<tr>
<td>2-Dimensional Design</td>
<td>6(^1)</td>
</tr>
<tr>
<td>3-Dimensional Design</td>
<td>6(^1)</td>
</tr>
<tr>
<td>Color</td>
<td>2(^2)</td>
</tr>
<tr>
<td>Introduction to Techniques</td>
<td>2(^1)</td>
</tr>
<tr>
<td>Required Art History Courses</td>
<td></td>
</tr>
<tr>
<td>Introduction to Art History I</td>
<td>2(^1)</td>
</tr>
<tr>
<td>Introduction to Art History II</td>
<td>2(^1)</td>
</tr>
<tr>
<td>Introduction to Art History III</td>
<td>2(^1)</td>
</tr>
<tr>
<td>Art History Electives</td>
<td>8</td>
</tr>
<tr>
<td>Required General Academic Studies</td>
<td></td>
</tr>
<tr>
<td>Literary Forms and Expressions</td>
<td>3(^1)</td>
</tr>
<tr>
<td>Texts and Contexts: Old Worlds and New</td>
<td>3(^1)</td>
</tr>
<tr>
<td>The Making of Modern Society</td>
<td>3(^1)</td>
</tr>
<tr>
<td>The Modern Context: Figures and Topics</td>
<td>3(^1)</td>
</tr>
<tr>
<td>Science</td>
<td>3</td>
</tr>
<tr>
<td>General Academic Studies Electives</td>
<td></td>
</tr>
<tr>
<td>To be elected from Art History(^1), Foreign Language(^1), History of Architecture, Humanities, Social Sciences and Sciences</td>
<td>12</td>
</tr>
<tr>
<td>Prerequisite and Advanced Studio Courses</td>
<td></td>
</tr>
<tr>
<td>To be elected from any studio discipline</td>
<td>56(^*)</td>
</tr>
<tr>
<td>Required Senior Presentation</td>
<td>0</td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td>To be elected from courses in any discipline at Cooper Union or at other institutions approved by the dean of the School of Art</td>
<td>11</td>
</tr>
</tbody>
</table>

Total Credit Requirement B.F.A. Degree | 130\(^*\) |

* Pending approval of Foundation Year Seminar.
1 First-year requirement for all students.
2 Second-year requirement for all students.
* Maximum of 3 credits.
4 With permission of the dean of the School of Art.
For Students who entered on or after September 2006

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Foundation Studio Courses</td>
<td></td>
</tr>
<tr>
<td>Basic Drawing (Analytical and Descriptive)</td>
<td>6</td>
</tr>
<tr>
<td>2-Dimensional Design</td>
<td>6</td>
</tr>
<tr>
<td>3-Dimensional Design</td>
<td>6</td>
</tr>
<tr>
<td>Color</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Techniques</td>
<td>2</td>
</tr>
<tr>
<td>Required Art History Courses</td>
<td></td>
</tr>
<tr>
<td>Introduction to Art History I</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Art History II</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Art History III</td>
<td>2</td>
</tr>
<tr>
<td>Art History Electives</td>
<td>8</td>
</tr>
<tr>
<td>Required General Academic Studies</td>
<td></td>
</tr>
<tr>
<td>Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Science</td>
<td>3</td>
</tr>
<tr>
<td>General Academic Studies Electives</td>
<td></td>
</tr>
<tr>
<td>To be elected from Art History</td>
<td>3</td>
</tr>
<tr>
<td>Foreign Language</td>
<td>3</td>
</tr>
<tr>
<td>History of Architecture, Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences and Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Prerequisite and Advanced Studio Courses</td>
<td>54</td>
</tr>
<tr>
<td>To be elected from any studio discipline</td>
<td></td>
</tr>
<tr>
<td>Required Senior Presentation</td>
<td>0</td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td>To be elected from courses in any discipline at Cooper Union or at other institutions approved by the dean of the School of Art</td>
<td>11</td>
</tr>
</tbody>
</table>

Total Credit Requirement B.F.A. Degree 130

Studio Courses
The student’s choice of studio courses is based on individual interest in various disciplines, on prerequisite courses for advanced areas of study and on the student’s interest in working with particular instructors.

There are limitations on the number of credits a student may take each semester in any one area of study, depending upon the student’s progress in the program (number of credits completed toward the degree). The number of credits allowed is determined as listed below:

<table>
<thead>
<tr>
<th>Credits Completed</th>
<th>Maximum Credits per Semester per Area of Study*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.F.A.</td>
<td></td>
</tr>
<tr>
<td>32 (Sophomore)</td>
<td>6</td>
</tr>
<tr>
<td>64 (Junior)</td>
<td>9</td>
</tr>
<tr>
<td>96 (Senior)</td>
<td>no limit</td>
</tr>
</tbody>
</table>

| Certificate | 30 | 9 |
| Certificate | 45 | no limit |

* includes related techniques courses

General Academic Studies Requirements and Electives
During the first two years, B.F.A. candidates must take four core courses in the humanities and social sciences (12 credits), as well as one course each semester in art history (three required courses and one elective course, eight credits total). At any time after the first-year they must take a three-credit science course.

Throughout the last two years, they must complete a minimum of 18 elective credits, six of which are required to be in art history; the remaining 12 may be taken in humanities, foreign languages (with permission of the dean of the School of Art), social sciences, art history (maximum three credits), history of architecture and the sciences.

Foreign language credit for intermediate and advanced courses, e.g., FL20J, FL21J, FL30J, FL31J, taught by language instructors with appropriate academic credentials, will be granted two general studies credits per semester with a limit of four credits accepted in the category of general academic studies electives with permission of the dean of the School of Art. Intermediate or advanced foreign language studies beyond four credits counted toward general academic studies will be acceptable for free elective credit, limited to two credits in language studies per semester.

Free Electives
During the last three years, students have a choice of electives in the School of Art in addition to the required curriculum. Courses designated with the prefix TE or SE receive free elective credit, as do studio courses taken beyond the 54-credit requirement. Only one TE course per semester may be taken. Students may also enroll in engineering or architecture courses at Cooper Union or courses at other accredited institutions with the permission of the dean of the School of Art (or the academic adviser). Free elective credits are approved and granted by the dean of the School of Art (or the academic adviser).
Outside Electives These electives may be used only to meet free elective and/or general academic studies credit requirements; they cannot substitute for prerequisite or advanced studio electives. Students may take up to three credits per semester at a college other than Cooper Union. For credit to be counted toward the B.F.A. degree, permission of the dean of the School of Art (or the academic adviser) is required before registration at another institution for the semester concerned. No such credit will be awarded retroactively.

Senior Presentation Requirement A public presentation of each senior student’s work is a requirement for graduation. Each student may satisfy this requirement with an exhibition or, where appropriate, a screening, performance or publication. No student will be permitted to receive a degree unless this requirement is completed to the satisfaction of the faculty and the dean of the School of Art at a mutually agreed upon time and venue. Completion of the requirement will be reflected on the student’s transcript. The Arthur A. Houghton Jr. Gallery will be reserved for senior student exhibitions during most of the spring semester; other appropriate exhibition spaces will also be made available.

Progress Toward the Degree Students are expected to maintain normal progress toward their degrees, i.e., passing enough credits each semester to complete degree requirements within four years of study.

The normal work load is 17 credits per semester during the Foundation year and 16 credits per semester thereafter (= 130 credits = B.F.A. degree requirement).

Students should consult with the Office of Academic Advisement in order to assess their progress towards the degree.

Requirements for Nonresident Study Eligibility for non-resident study, i.e., the exchange and mobility programs, is as follows: Students who have completed at least 64 credits toward the bachelor of fine arts degree, have a cumulative G.P.A. of 3.0 in studio and a cumulative G.P.A. of 2.7 overall, are in good academic standing and have no outstanding first- and second-year requirements, may apply for one semester of non-resident study.

Transfer students must have completed at least 32 credits in residence at Cooper Union before applying for non-resident study and must have an additional 32 credits to complete in residence upon their return. Transfer students must also have met all first- and second-year requirements and be in good academic standing.

Students applying for non-resident study must be in residence during the semester when they are completing the application process.

Students may earn a maximum of 12 credits in studio courses for one semester of study on exchange or mobility. A maximum of six credits may be awarded by any one faculty member for work done while on exchange or mobility.

Since foreign schools may have academic calendars at variance with that of Cooper Union, students studying on exchange who cannot return in time for the start of the second semester at the School of Art must request an elective leave of absence for that semester.

Students may participate in non-resident study only once during their stay at Cooper Union.

For information on details governing these programs, please inquire at the Office of Academic Advisement and Off-Campus Programs.

Exchange Programs The School of Art offers a number of exchange programs with schools abroad. They currently include opportunities to study in the Czech Republic, England, France, Germany, Israel, Italy, Japan, the Netherlands, Spain, Sweden and Switzerland.

Mobility Program The Cooper Union School of Art is a member of the Association of Independent Colleges of Art and Design (A.I.C.A.D.). A list of schools participating in the mobility program in the U.S. and Canada is available in the Office of Academic Advisement.

Schools in the metropolitan area are not available for a semester exchange. By special arrangement of Cooper Union and Parsons School of Design, Cooper Union students may enroll in an outside elective course at Parsons.

Students should consult the Office of Off-Campus Programs for information about these exchange and mobility opportunities.

Students from other institutions who are enrolled at the School of Art as exchange or mobility students may not apply to transfer to The Cooper Union School of Art while in residence at Cooper Union.
Credits A credit is an academic unit of measure used for recording progress in the program of study and in meeting the academic requirements of the degree. In studio and lecture courses, one (1) credit represents a minimum of three (3) hours of work during each week of a 15-week semester dedicated solely to that course. These criteria apply to each course in which the student is enrolled.

Example in studio courses:
Sculpture, 3 credits, equals 9 hours of work per week (i.e. 4 hours in class and 5 hours outside work (studio or home) or 3 hours in class and 6 hours outside work.

Example in a lecture course:
English Literature, 3 credits, equals 9 hours of work per week (i.e. 3 hours in class and 6 hours of outside work).

The number of credits awarded in each course represents the fulfillment of an agreement by the student to satisfy the course requirements as defined by each instructor, on time, and in accordance with the definition of credit.

Additional Credits in an Advanced Course Permission to add credits to individual course commitments may be granted only under special conditions and must receive the written approval of the instructor and the dean of the School of Art (or the academic advisor) during the registration process.

Juniors and seniors in good academic standing (defined as having earned a minimum 2.7 G.P.A. overall for the previous semester and a minimum 3.0 G.P.A. in School of Art studio courses for the previous semester) may add credits to their individual course commitment under the following conditions: no more that two (2) additional credits in one course and no more that a total of three (3) additional credits in any one semester.

Additional Credits in a Semester Normal progress towards a degree is 16 credits per semester. Students may register for up to 19 credits only if they earned a minimum 2.7 G.P.A. overall for the previous semester as well as a minimum 3.0 G.P.A. in School of Art studio courses for the previous semester. Under special conditions, students may register for more than 19 credits only with the permission of the dean of the School of Art (or the academic advisor). Students who wish to register for less than 16 credits must do so in consultation with the Office of Academic Advisement of the School of Art.

Independent Study Independent study is an alternative to classroom study and may be taken only with a member of the resident faculty (defined as full-time or proportional-time faculty members or adjunct faculty members on three-year appointments). Only juniors and seniors in good academic standing (defined as having earned a minimum 2.7 G.P.A. overall for the previous semester and a minimum 3.0 G.P.A. in School of Art studio courses for the previous semester) are eligible for independent study. Independent study may be taken only once during a semester in an advanced subject for one (1), two (2) or three (3) credits. One (1) credit of independent study represents a minimum of three (3) hours of work during each week of a 15-week semester.

The major consideration in approving proposals for independent study is the educational value of the study project within the structure of the degree requirements. Permission to undertake study off-campus can be given only when it is required by the nature of the specific project and when the experience has been evaluated to be valid by the instructor and approved by the dean of the School of Art.

Transfer Credits All incoming students (freshman with advanced standing and transfer) may apply for transfer credits to be counted toward the B.F.A. degree requirements or certificate in art. These credits must be approved by the dean of the School of Art, with the evaluation based on transcripts from other schools. The transfer credits will be officially recorded only after one semester of satisfactory work is completed at Cooper Union.

Transfer credits may be granted specifically in lieu of the School of Art’s foundation, prerequisite or elective courses. A maximum of 64 credits may be transferred toward the B.F.A. degree, at the time of admission only. An accepted applicant who has previously earned a baccalaureate degree in a discipline other than art will be treated as a transfer student for purposes of evaluating completion of degree requirements and length of time allotted at Cooper Union to complete the B.F.A.

The required 11 credits of free electives, however, must be completed during the student’s stay at Cooper Union. No previously earned credits may be transferred into this category. Exceptions to this rule may be granted by the Admissions Committee, with the approval of the dean of the School of Art, at the time of admission only. (See also page 12.)

Attendance Attendance at classes is mandatory. Unexcused absences and excessive lateness will be cause for probation or dismissal.

Registration Only those students who are officially registered in a course (i.e., by approval of the dean of the School of Art and notification to the Office of Admissions and Records) will have the grades and credits entered on their records. Students are required to register for each semester during the announced registration period.

A student who receives a grade of F, W or WU in the first semester of a one-year course will not be allowed to register
for the second semester of that course. In such a situation the student will be called before the Academic Standards Committee for individual review and/or counseling in order to determine a future program of study. Students whose records by mid-semester indicate a possible failure to meet required standards, may be so informed.

Grades At the end of every semester each student receives a grade for his/her semester’s work in each subject.

The grades, expressing the faculty’s evaluation of students’ work in School of Art courses, are: A (4.0), A- (3.7), B+ (3.3), B (3.0), B- (2.7), C+ (2.3), C (2.0), C- (1.7), D+ (1.3), D (1.0), D- (.7), F (0).

The numbers in parentheses give the assigned numerical equivalents of the letter grade for each course. These are used in computing semester index and cumulative index ratings by multiplying the numerical equivalent of the grade for each course by the credits assigned to that subject. The sum of such multiplications for all the subjects carried by a student is divided by the total credits carried by him/her for that period to determine the index or grade point average.

The meanings for the letter grades are as follows:

- **A** Outstanding performance
- **B** Above average performance
- **C** Requirements completed; average performance
- **D** Passing, but unsatisfactory
- **F** Failure to meet the minimum requirements of a subject
- **I** The designation indicates that the work of the course has not been completed and that assignment of a grade and credit has been postponed. An I will be given only in cases of illness (confirmed by a physician’s letter) or documentation of other extraordinary circumstances beyond the student’s control.

The designation of I will be granted only with the approval of the dean of the School of Art.

The deadline for removal of an I designation will be determined by the instructor and recorded at the time the designation is given, but will not be later than two weeks after the start of the next semester. If the I is not removed within the set time limit, either by completing the work in the subject or by passing a reexamination, the I will automatically become an F unless the dean of the School of Art extends the time or the student withdraws from school before the deadline date.

- **W** Indicates that the student has received permission from the dean of the School of Art and the instructor to withdraw from a course while passing the course requirements at the time of withdrawal. This permission must be obtained no later than the end of the sixth week of the semester. The grade is not included in the calculation of the student’s semester rating.

WU Indicates that the student has dropped a course without permission of the dean of the School of Art and the instructor after the end of the eighth week of the semester. This grade is not included in the calculation of the student’s semester rating.

When appropriate, certain courses may be designated as Pass/Fail courses.

- **Pass** Requirements completed. This designation is not included in the calculation of the student’s semester rating.
- **Fail** Failure to meet the minimum requirements of a course. This grade is included in the calculation of the student’s semester rating; its numerical equivalent is 0.

A change in an official grade of record, other than the I designation, cannot be made by the dean of Admissions and Records without the express written consent of the instructor and the dean of the School of Art. Grade changes will not be accepted after one year has elapsed from the completion of the course.

Change of Program: Dropping a Course Students may drop a course by notifying the School of Art office and the Office of Admissions and Records during the first two weeks of a semester. A withdrawal from class during this time will result in deletion of the course from the student’s record and must be accompanied by an addition of equivalent credits in another course as needed to maintain normal progress toward the degree.

Students who wish to drop a course after this deadline must first receive permission from the dean of the School of Art and the instructor. If the student is passing the course at the time of withdrawal, a designation of W will appear on his/her record. Any course dropped by the student without permission of the instructor and the dean of the School of Art and without notification to the Office of Admissions and Records will be recorded as WU, however the instructor is free to record an F grade in such cases.

If, in the opinion of the instructor, a student’s presence is hindering the educational progress of the class, the student may be dropped from the class at the request of the instructor. A grade of W will be recorded for the course.

After the eighth week of the semester, a course may be dropped only after consultation with the Academic Standards Committee and with the approval of the dean of the School of Art.

Change of Program: Adding a Course Students are permitted to add a course only during the first two weeks of a semester. They must receive the approval of the dean of the School of Art and must report the addition to the Office of Admissions and Records.
Change of Program: Change of Section Students who have completed the Foundation program are permitted to transfer from one section to another of the same course before midterm if they are passing the course and if space is available at that time. Permission of the dean of the School of Art and both instructors is required for the change of section and students must notify the Office of Admissions and Records.

Dismissal from The Cooper Union and Academic Probation
A semester rating of all courses, (i.e., School of Art and Faculty of Humanities and Social Sciences) below 2.0 places students on automatic probation and makes them subject to dismissal or withdrawal.

Students whose semester rating in School of Art studio courses only is 2.7 or below in any one semester are automatically placed on probation and are subject to dismissal or withdrawal.

Students must maintain normal progress toward the degree. Failure to observe this standard is grounds for dismissal.

Students with unexcused absences and excessive lateness are subject to dismissal or withdrawal.

Appeal Students may appeal to the Academic Standards Committee of the School of Art in writing and/or in person when notified of their dismissal.

The Academic Standards Committee shall either confirm the dismissal or determine a probationary period. The decision of the committee shall be final.

Students on academic probation who do not improve their academic standing during the probationary semester or who fail to meet minimal academic standards during any subsequent semester will be notified that they are subject to dismissal from Cooper Union.

Leave of Absence

Elective Leave Elective leave may be granted for up to a year’s duration to students who are in good academic standing (defined as having earned a cumulative G.P.A. of 3.0 in studio courses and a cumulative G.P.A. of 2.7 overall). This form of leave is only available upon completion of the first-year Foundation Program.

Medical and Emergency Leave Medical and emergency leave may be granted with the approval of the dean of the School of Art and the dean of students and requires supporting documentation.

If a leave has been granted for medical reasons, a recommendation from the student’s physician or therapist must support the student’s request for reinstatement and/or extension of leave. Approval of the dean of students is required for reinstatement. Cooper Union reserves the right to require a second opinion by a physician of its choosing.

Students must request all leaves of absence in writing. A written request for reinstatement is also required.

Withdrawal from School Written requests for withdrawal from school should be addressed to the dean of the School of Art.

Readmission Students who have withdrawn from the school and wish to be readmitted must reapply jointly to the Academic Standards and Admissions Committees.

Students dismissed by the Academic Standards Committee must reapply to the Academic Standards Committee, which will make a recommendation to the Admissions Committee. At the time of application for readmission, students dismissed from Cooper Union should demonstrate a change in the circumstances that warranted their dismissal.

Graduation To be eligible for graduation students must complete the minimum number of credits required for the B.F.A. degree or the Certificate and must have been enrolled for a minimum of four semesters at The Cooper Union as a full-time student for the B.F.A., or a minimum of four semesters as a part-time student for the Certificate in Art.

All candidates for the B.F.A. degree must satisfactorily complete the requirement for a senior presentation.

Students must have a cumulative grade point average of 2.0 or better in order to graduate from The Cooper Union School of Art.

Students who have not fulfilled the requirements for graduation will normally not be permitted to participate in commencement exercises.

Graduation requirements as outlined in this catalog are guidelines that are subject to change.

Students are responsible for their total accomplishment and for being continuously aware of the standards defined in the preceding paragraphs.

Residence A candidate for a degree must have been enrolled during two academic semesters preceding the granting of the degree and in residence during the last semester.
Facilities

The School of Art is housed in the 1859 landmark Foundation Building. The renovated studios and labs offer complete facilities for a visual arts education. Seniors, juniors and many sophomores are assigned individual studio spaces by lottery.

Graphic Design Two multimedia classrooms are equipped with high-definition projection, surround sound and with Apple Macintosh G4s, G5s and MacPros, which are connected to the Internet via T1 lines. In addition, the Computer Studio provides hands-on use of scanners, black-and-white and color printers and copiers. Photocopying and professional image-setting are offered at student rates. A metal type shop with Vandercook presses is also available with technical staff assistance. The students’ personal studio areas provide individual drawing tables and flat file storage for advanced students.

A professional staff of technical assistants is available during posted Computer Studio hours.

Painting/Drawing In the Foundation Building, skylight ceilings flood abundant natural daylight throughout a number of classrooms, workrooms and home spaces dedicated to painting and drawing. Classrooms are equipped with easels, model stands, palette tables, sawhorse tables and storage room for props. Common workrooms are furnished with slop sinks, worktables and storage racks to accommodate the preparation and storage of artwork.

The painting office has equipment for check-out and a limited number of art supplies for sale. Staff technicians are available during the week to provide technical support and help facilitate a healthy and safe work environment.

During the transitional period, until the completion of the new academic building, well-lit studio space is also being housed in an industrial building in Long Island City, Queens. Just as in the Foundation Building, the facilities include student studio spaces, a technicians’ office, a painting preparation area and storage racks for paintings. The facility includes a classroom and a small computer studio, as well as a workshop with power tools for the preparation of simple wood structures and panel supports. The Long Island City studios are open 24 hours, seven days a week. Technical staff is available during the majority of building hours.

Photography The lab area is equipped with 16 4x5-inch enlargers in a large black and white gang darkroom. There are eight individual color darkrooms that accommodate 35mm to 4x5-inch negative, as well as one color enlarger that can take 35mm to 8x10-inch negatives. In addition, there is a 32-inch-wide professional color print processor.

A well-equipped studio provides the space and tools to photograph two- and three-dimensional sets with tungsten and/or electronic flash lighting systems for traditional or digital imaging.

Large- and medium-format film cameras are available for checkout as well as several professional digital SLR cameras. The lab has seven Macintosh work stations and the ability to print digitally up to 16x20 inches.

A professional staff of technical assistants is available continuously during posted studio hours.

Printmaking A well-equipped and ventilated printmaking shop accommodates intaglio, lithography, silkscreen and relief printing processes and papermaking. The facility includes three lithography presses, two etching presses, three silkscreen vacuum tables and equipment for digital imaging methods. There are more than 100 stones for lithography and large diameter rollers for surface rolling in etching. The paper mill is complete with beater, a 75-ton hydraulic press, vats and the capability for both Western and Japanese papermaking.

A professional staff of technical assistants is available continuously during posted studio hours.

Sculpture A large, all-college sculpture shop supports opportunities for production of a wide range of three-dimensional work. This facility is equipped with machinery for wood- and metal-working, mold-making, bronze casting and projects using wax, clay, plaster and some plastics. An Epilog 36EXT 60 Watt Laser cutting/engraving system has recently been implemented.

A professional staff of technical assistants is available continuously during posted shop hours for management and supervision, as well as consultation and collaboration on projects from many different studio disciplines.

Film The film area offers basic production equipment in Super 8 and 16mm formats. Accessories include analog and digital audio recorders, microphones, lighting kits, tripods and various other production equipment. The studio space houses Super 8 and 16mm telecine (film to tape) transfer machines, animation stands, a 16mm rotoscope stand and a JK optical printer. Editing equipment includes a Final Cut Pro system, two Steenbeck editing tables and various other editing/viewing set-ups. The sound room is equipped with a ProTools HD digital audio workstation with surround mixing capabilities and a vocal isolation booth. ProTools LE Mbox systems are also available. The projection booth has playback facilities for magnetic film and tape, analog and digital audio sources and projection sound, with ties to the main classroom/screening room, which doubles as a theater for large-screen projection of film and video.

A professional staff of technical assistants is available continuously during posted studio hours.
Video The video facilities provide portable video recording capability using Mini-DV and 3-CCD DVCam and 24p and HDV camcorders. Accessories include microphones, lighting kits, tripods and various other production equipment. The video lab has eight complete DV workstations with Final Cut Studio, Adobe Creative Suite and other audio and video software. Additional outboard equipment includes digital audio/video mixers, special effects devices and various analog audio and video decks. Other equipment (monitors, projectors, VCRs and DVD players) is also available for video installation work. The video lab is networked and equipped with a video/data projector for instruction and viewing student work. Videos can also be viewed in the screening room equipped with a video projector and surround sound system.

A professional staff of technical assistants is continuously available during posted studio hours.

Animation Lab The computer lab adjacent to the film and video areas provides Mac and Windows workstations for two- and three-dimensional animation, stop motion capture, image processing and audio/video editing and compositing. Software includes Final Cut Studio, Adobe Creative Suite and various other software for producing animation and digital artwork. Additional hardware includes a flatbed scanner, digital copy/animation stands, a digital rotoscope station and various analog and digital audio/video decks, as well as a vocal isolation booth. The animation lab also serves as an auxiliary facility for students working with film, video and sound projects and is networked and equipped with a video/data projector for instruction and viewing student work.

A professional staff of technical assistants is continuously available during posted studio hours.

The Computer Studio The studio provides students with a wide range of digital media and imaging options. The facility houses Apple Macintosh G4, G5 and MacPro computers; high-resolution reflective and transparency scanners; a film recorder; black-and-white and color laser printers and copiers; and large-scale color printers. There are dedicated audio-video workstations capable of producing quality digital/analog video for broadcast, new media and web publishing.

Media equipment such as digital video cameras, digital still cameras, DAT sound recorders and microphones is available to loan by students. Software includes applications for graphic design, multimedia, audio-video and animation. The fully-networked studio also provides complete Internet access, CD and DVD production capabilities and a number of removable storage options.

Two classrooms and an open studio accommodate a variety of student projects.

A staff of professionals is continuously available during posted studio hours.

Center for Design & Typography The Center combines education with public service. Advanced graphic design students work in guided classroom situations with actual outside nonprofit agencies as clients, and on internal Cooper Union print and web design projects.

Galleries Several galleries around the campus are available to exhibit the work of students and outside artists, in solo and group shows. The Arthur A Houghton Jr. Gallery, located on the second floor of the Foundation Building, frequently presents external shows sponsored by the School of Art. In the spring semester it is almost completely booked for the presentation of work by seniors in the School. The annual student exhibition at the end of the school year is mounted throughout the Foundation Building and celebrates the work of art, architecture and engineering students at all levels.

Herb Lubalin Study Center of Design and Typography This archive of seminal works in graphic design includes an extensive print and slide collection, as well as a reference library pertaining to the history and theory of visual communication. In addition to the archive, the Center maintains a rich and varied programming schedule, including exhibitions and lectures addressing major trends in design with leading international practitioners.
Courses

Students should consult official schedules for courses offered in a given semester. There is no assurance that a courses listed in this catalog will be given every year. Each school offers a range of elective courses that are open to all students; consult each school’s course listing.

Prefix Key
FA designates studio courses (meet three or four hours per week)
SE designates seminars or lecture courses (meet three hours per week)
TE designates techniques courses (meet four hours per week)

Required Foundation Courses

FA 101.1 Introduction to Techniques An introduction to the physical aspects of working with wood, metal, plaster—and plastics, as well as an introduction to on-campus computer facilities and resources. A basic introduction to the Adobe interface, specifically Photoshop and Illustrator will be provided.
1 credit per semester.
One-year course. Pass/Fail. Staff

FA 102 Two-Dimensional Design Exploration of the visual and intellectual aspects of form on the two-dimensional surface, in a variety of media. Investigations into the relationships of perception, process and presentation.
3 credits per semester.
One-year course.
Carrow/Esst (sabbatical fall 2008)/McCarty/Morton/Tochilovsky

FA 104.1 Basic Drawing (Analytical and Descriptive) A course in freehand drawing designed to emphasize perceptual and inventive skills in all drawing media.
3 credits per semester.
One-year course.
Brown/Goldberg/Lawley/Richter/Vallage

FA 109 Three-Dimensional Design Students work on projects that explore the fundamentals of forms and space and investigate the properties of materials, structure, mass, scale, light and motion.
3 credits per semester.
One-year course.
Adams/Boyd/Friedman/Lins

TE 304 Projects in Final Cut Pro and After Effects This course explores techniques and projects in Final Cut Pro and After Effects. Students will complete projects that demonstrate their skill and understanding of video editing and motion graphics. Students may take either session for 1 credit or both sessions for 2 credits.
1-2 credits. One-semester course. Cannot be repeated. Free elective credit. Mckewraith

TE 305 Projects in XHTML and Programming This course explores techniques and projects in XHTML and programming. Students will complete projects that demonstrate their skill and understanding of building web sites and basic programming. The primary software used in the course will be BBEdit, Flash and Processing. Students may take either session for 1 credit or both sessions for 2 credits.
1-2 credits. One-semester course. Cannot be repeated. Free elective credit. Sparkling

Contemporary Art Issues

SE 401A&B Contemporary Art Issues This seminar addresses issues essential to an understanding of contemporary aesthetic thought and critical practice. This includes the critique of modernism and theories of representation and ideology, which have been explored by contemporary artists and theoreticians and, since the late 1960s, have had a profound effect on the arts. Linked to the discussion is an examination of the role of art in contemporary society, the changing concept of the avant-garde and the relationship of art to culture. The format of the seminar provides for required readings, oral and written reports, lectures and invited speakers.
Topic for fall 2008: A User’s Guide to Contemporary Art; History, Theory, Politics, 1968-2008. Despite the wide range of formal strategies and topical concerns that mark their work, the most critically esteemed and professionaly successful artists working today are unified by a rigorous engage-ment with critical theory, political discourse and the history of 20th-century art. This seminar will consider these three domains in their mutual interac-tions, with the aim of fostering the ca-pacity of students to critically engage and professionally navigate the dis-courses, institutions and economies of “contemporary art.”
2 art history credits. One-semester course. May be repeated once for art history credit. McKew/BA

Elective, Prerequisite and Advanced Courses

Calligraphy

Prerequisite Course

TE 216 Calligraphy Geometry, optical balance and the stroke of the broad-edge pen are primary influences that shape the Roman alphabet. Students learn the fundamentals of “beautiful writing” through the study of historical models and the principles that are the basis of classical and modern letterforms. Exercises in ink train the hand kinaesthetically to write letters with graceful movement. Exercises in pencil train the eye to see and analyze the subtle geometry and skeletal “ideal” form of letters. Precise rhythm in letter-spacing and careful line-spacing create the color and texture of the page. The class will have an emphasis on page design involving hand written compositions. Roman and Italic capitals and small letters will be the focus of first semester students. Those who repeat may be introduced to other historical hands.
2 credits. One-semester course. May be repeated once. Fall only. Free elective credit. D.Edwardo

FA 419 Independent Study in Calligraphy 1-3 credits. Requires approval of instructor and the dean of the School of Art

TE 303.1 Projects in Photoshop and Illustrator This course explores techniques and projects in Photoshop and Illustrator. Students will complete projects that demonstrate their skill and understanding of digital image creation. Students may take either session for 1 credit or both sessions for 2 credits.

Computer Techniques

FA 240.1 Drawing I The course is designed to explore the phenomena of drawing as basic to the visual language of all disciplines. The fundamental notion of observation and analysis in drawing is investigated. As preparation for work in an advanced level, the course involves further development of drawing skills and techniques, as well as an emphasis on individual aesthetic development. Assignments and group critiques are central to the course.
3 credits per semester. One-semester course. May be repeated once. Prerequisite to all Advanced Drawing.

Advanced Courses

FA 341.1 Advanced Drawing Advanced studies in drawing emphasizing the student’s conceptual independence from traditional draftsmanship. This course is for students who have an established direction in drawing.
3 credits. One-semester course. Barth

FA 342.1 Advanced Drawing Students are encouraged to explore and experiment with drawing as a way to further develop visual understanding of pictorial and sculptural space. The issues surrounding representation and perception are addressed. The focus of this class is to help students to use drawing as a critical and procedural tool. Using notebooks and journals as well as reading and research methods to process ideas, students will work with drawing to advance and integrate their individual studio practice both technically and conceptually. Group critiques and drawing sessions as well as individual meetings with the instructor are integral components of the course.
3 credits. One-semester course. Bordo

FA 345.1 Advanced Drawing This course offers an opportunity to develop a vital vocabulary in drawing through exploration of figuration, abstraction, observation or imagination. There will be an emphasis on the development and evolution of concepts, ideas, and observations from the sketchbook to completed works.
3 credits. One-semester course. Miller
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Instructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 346.1</td>
<td>Advanced Drawing</td>
<td>McCarty</td>
<td>This course will focus on the conceptual basis of drawing as a medium unto itself—drawing as a finished and complete form of art, not merely a tool for constructing a painting, drawing or installation. Such techniques as duration, repetition, endurance, language and the body will be explored. Drawing will also be looked at in the context of contemporary art practices: what do the films of Andy Warhol have to do with drawing? How does the influx of text into 20th-century art practice intersect with drawing? How does minimalism affect drawing? How is drawing reflected in “sampling”? What if any are the political implications of drawing in a time of high-speed computer technology? 3 credits. One-semester course.</td>
</tr>
<tr>
<td>FA 344.1</td>
<td>Advanced Drawing</td>
<td>Stephen Talasnik</td>
<td>This course will use the seminar format to address the practice of drawing in our contemporary context. Individual meetings, assigned reading material and group critiques will be integral to the course. Emphasis will be placed on balancing concerns of both form and content through either experimentation or consistency in materials, technique and installation. 3 credits. One-semester course.</td>
</tr>
<tr>
<td>FA 449</td>
<td>Independent Study in Drawing</td>
<td>Gloria McCarty</td>
<td>For spring 2009 and later semesters, please see course schedule and registration materials for course descriptions specific to Visiting Artists teaching that semester.</td>
</tr>
<tr>
<td>FA 270.1</td>
<td>Film I</td>
<td>Raad/Hayes</td>
<td>An introduction to the techniques and aesthetics of filmmaking. In a mixture of theory and practice, participants will be required to produce at least two film projects in response to concepts and issues raised. The course is in three parts: technical instruction, critique and screenings of artists’ work. Students are trained in all aspects of filmmaking from shooting, lighting and sound to editing in film or on computer and DVD authoring. There are weekly reviews of student works-in-progress and each class will include survey of the history of artists working in film. 3 credits. One-semester course.</td>
</tr>
<tr>
<td>FA 208.1</td>
<td>Video I</td>
<td>Gatten</td>
<td>An introduction to video production, postproduction, history and criticism. Students are introduced to basic camera operations, sound recording and lighting, as well as to basic editing using Apple’s final Cut Pro software, and to DVD production using Apple’s DVD Studio Pro. Three assignments are to be completed during the semester; two are assigned in conjunction with the professor. Critiques of the assignments are crucial to the course as students are expected to speak at length about the formal, technical, critical and historical dimensions of their works. Weekly readings in philosophy, critical theory, artist statements and literature are assigned. The course will also include weekly screenings of films and videos, introducing students to the history of video art as well as to other contemporary art practices. 3 credits. One-semester course.</td>
</tr>
<tr>
<td>FA 209.1</td>
<td>Video II</td>
<td>Silver</td>
<td>Video II offers an advanced approach to conceiving, shooting and editing projects utilizing the moving image. The class will lead to a deeper understanding and control over the image, both in shooting and editing. Through screenings, readings and assignments, students will explore the dominant languages used in the moving image, as well as experimental works that actively avoid, subvert, confuse or mix these languages. Students will complete several short assignments leading the conceptualization and completion of an ambitious project of their choice. 3 credits. May not be repeated.</td>
</tr>
<tr>
<td>FA 275.1</td>
<td>Film II</td>
<td>McLaren</td>
<td>This introduction to 16 mm filmmaking covers a wide range of techniques such as shooting with the reflex Bolex, lighting, single-frame construction, sound and editing. Students learn 16mm filmmaking with hands-on experience and are encouraged to use the unique qualities of the medium to express their original visions. This course integrates theory and analysis of cinematic language with film practice. Films made by independent filmmakers and artists will be screened and discussed and advanced filmmaking techniques such as optical-printing and multiple-exposure will be taught. Critiques of student work will take place at various points during the semester and students are required to complete their own final 16mm sound film by the end of the course. 3 credits. May not be repeated.</td>
</tr>
<tr>
<td>FA 207.1</td>
<td>Film II</td>
<td>Silver</td>
<td>A continuation of Film I, this course is concerned with the techniques and aesthetics of filmmaking, in particular, editing and sound. Students will be required to complete two projects during the semester one for the course, one for the second semester. 3 credits. One-semester course.</td>
</tr>
<tr>
<td>FA 375.1</td>
<td>Film II</td>
<td>Silver</td>
<td>This introduction to 16 mm filmmaking covers a wide range of techniques such as shooting with the reflex Bolex, lighting, single-frame construction, sound and editing. Students learn 16mm filmmaking with hands-on experience and are encouraged to use the unique qualities of the medium to express their original visions. This course integrates theory and analysis of cinematic language with film practice. Films made by independent filmmakers and artists will be screened and discussed and advanced filmmaking techniques such as optical-printing and multiple-exposure will be taught. Critiques of student work will take place at various points during the semester and students are required to complete their own final 16mm sound film by the end of the course. 3 credits. May not be repeated.</td>
</tr>
<tr>
<td>FA 347.1</td>
<td>Advanced Drawing</td>
<td>Leslie Hewitt</td>
<td>This class will emphasize drawing that is “ideational,” the exploratory process that enlists drawing as a visual thinking tool. Based on individual studio investigation, students will be asked to use drawing as a means to deconstruct current activities in an attempt to expand problem solving. Although individual studio preferences will direct the core of the class requirement, students will be asked to examine how drawing can impact ideas not only from within fine arts, but also through the historical applications of the architect, designer and inventor. Students will be required to research drawing applications outside of their immediate studio concerns. Whether the inventions of Leonardo, the language of paper architecture, stage set designs of the Russian Bauhaus or the industrial design notebooks of Raymond Loewy, various types of drawing applications will be examined as a means to enable students to challenge their thinking. Students will also be required to attend two life drawing sessions within the semester and visit two public drawing collections with the class. Class critiques, a drawing studio component and individual meetings with the instructor will constitute the structure of the class. 3 credits. One-semester course.</td>
</tr>
</tbody>
</table>

Prerequisite Courses

- **Film/Video**
- **Advanced Drawing**
- **Film I**
- **Film II**
- **Video I**
- **Video II**

Note: Film I is required of all students who wish to pursue additional work in the medium.
Advanced Courses

FA 376.1A Animation I Students will learn an arsenal of physically-based film animation techniques from line animation, direct-on-film and rotoscoping to cut-out animation. Students will apply their skills and passions based in their own work in other art forms (drawing, painting, photography) and will make a few short animation projects over the semester. The course emphasizes the creation of meaningful and realized films through the integration of content and ideas with aesthetics and technique. All animation artwork will be created non-digitally, though students will learn to shoot and finish their projects both digitally and to film. Classes will incorporate basic technical instruction, viewings and discussions about a variety of classic and contemporary animation films, hand-on animation work and critiques. 3 credits. May not be repeated. Reeves

FA 376.1B Animation II 3 credits. Spring only. TBA

378 Computer Image in Motion I (Not offered 2008–09)

FA 379.1 Computer Image in Motion II (Not offered 2008–09)

FA 377.1 Advanced Film Independent projects workshop in Super 8 and 16mm film. As well as working in depth with film, students are encouraged to explore all possibilities of the moving image from expanded projection techniques to kinetic constructions. 3 credits. One-semester course. May be repeated. Prerequisites: Film I and one of the following: Film II or Animation II or Computer Image in Motion II; Hayes/Visiting Artist Lana Lin (fall 2008)

FA 380.1 Advanced Video Advanced students use all the facilities of the video lab and continue to develop their personal styles through close individual instruction. Students complete two fully realized independent projects. Analysis and discussion of current video exhibitions supports group critiques. 3 credits. One-semester course. May be repeated. Prerequisite: Video II; Hayes/Visiting Artist Lana Lin (fall 2008)

FA 381 Digital Sound Design Workshop An investigation of the structures of the sounds around us and how to listen to, analyze and manipulate them, with special emphasis on sound for picture. Discussion of how the gulf between the sounds of the environment and composed music was bridged in the 20th century. Training in the use of Protocols, an all-inclusive system for recording, editing and mixing sound, which has become the system of choice in the modern studio. 3 credits. Offered fall and spring. Pre- or co-requisite: Film I or Video I or Motion Graphics. May not be repeated. Burckhardt

FA 382 The Question of the Document This class is open to students working in all forms. Students are expected to initiate and work on independent projects—individually or in groups and must be willing to show work in class while in the process of making it. The focus of the class will be on the question of the document in media art and related themes of history, facticity, testimony, witnessing and evidence. Students are expected to attend all screenings and exhibitions, keep up with the assigned readings and write short papers. 3 credits. Pre- or co-requisite: One advanced studio course. Raad/Gilbert

FA 479 Independent Study in Film 1-3 credits. Requires approval of instructor and the dean of the School of Art

FA 489 Independent Study in Video 1-3 credits. Requires approval of instructor and the dean of the School of Art

Design

Prerequisite Courses

FA 210.2A Graphic Design I: Visual Sequencing The sequential aspects of composition are introduced in conjunction with studio projects. Contemporary examples as well as cave painting, pictographic writing systems and medieval painting cycles are presented. Basic image-making processes, such as graphic translation, photography and computer illustration are explored. Bookbinding and computer illustration are provided in relation to specific projects. 3 credits. Fall only. Joel/Santoro

FA 210.2B Graphic Design II: Word and Image The complex relationship between word and image is explored. The study of semiotics, emphasizing the philosophy of communication, provides a rich historical and intellectual base for experimental projects combining verbal and pictorial information. 3 credits. Spring only. Prerequisite: Graphic Design I. Joel/Santoro

FA 213.2A Typography I The history, formal elements and practice of typography are introduced. Lectures present the origins and evolution of writing systems, as well as the history, technological developments and social impact of type design. Studio projects explore a wide variety of typographic processes, such as hand and computer composition. Copyfitting, preparation of layouts and comps, mechanicals and printing methods are included. 3 credits. Fall only. Craig/Esal (sabbatical fall 2008)/Rub/Tochilovsky

Advanced Courses

FA 214B Typography II Empirical explorations of typographic messages through placement, massing, weight, size and color are analyzed to develop an understanding of aesthetic composition of typographic form and meaning. Legibility, unpredictability and sequencing, as well as the use of grid structures, are investigated. The development of critical judgment about typography is emphasized. 3 credits. Spring only. Prerequisite: Typography I. Famira

FA 310.1A Information Design The visual communication of complex information is introduced through presentations and studio projects that explore organizational structures such as charts, diagrams, maps, illustrations, photographs and typography. Computer instruction will be provided as it relates to specific projects. 3 credits. Fall only. Prerequisites: Graphic Design I and II; Typographic I; two additional graphic design courses. Frank Stanton Chair in Graphic Design Paul Sahre (fall 2008)

FA 310.1B Publication Design The complex issues unique to editorial and publication design are explored through studio projects and presentations that emphasize the grid, effective sequencing and typographic form. Computer instruction will be provided as it relates to specific projects. 3 credits. Spring only. Prerequisites: Graphic Design I and II; Typography I; one additional graphic design course. Esal (sabbatical fall 2008)

FA 312.1 Experimental Typography This course will emphasize innovation, imagination and creativity in the realm of typography, manipulating it freely as a means of expression. Computer techniques as well as hand drawing, collage and pictures will be used to compose layouts, including posters, limited art books and animated typography for the web. Students will choose a theme and develop it with abstract type expression. 3 credits. Prerequisite: Typography I and II. Famira

FA 313.1 Art of the Book In this course the book will be explored as an interdisciplinary medium, placing emphasis on integrating and experimenting with form, content, structure and ideas. During the first half of the semester, students will make a number of books, examining sequence, series and text/image relationships, using various book structures. These “sketches” will prepare students for an extended book project during the second half of the term. 3 credits. Prerequisite: Typographic I or permission of instructor. Fall only. Morton

FA 315 Advanced Design Graphic designers often work in situations where project parameters are outside their control. This course will concentrate on problem solving as a way to work within a given set of limitations. Students will experiment within these limitations in order to see them as opportunities for new and unexpected work. 3 credits. Fall and spring semesters. Prerequisites: Graphic Design I and II; Typographic I; two additional graphic design courses.

FA 320.1 Visual Identities Design issues unique to creating a coherent, yet diverse visual system will be analyzed and applied in a variety of contexts. Concepts and methods for integrating symbols, images, words and objects will be explored. 3 credits. Prerequisites: Graphic Design I and II; Typographic I; one additional graphic design course. Esal (sabbatical fall 2008)
FA 322 Professional Practice
Graphic design projects for non-profit institutions, under the direction of faculty and in cooperation with the staff of the Center for Design and Typography, provide students with an opportunity for professional experience. Portfolio presentation and professional ethics will be addressed.

3 credits. One-semester course.
Prerequisites: Graphic Design I and II; Typography I; two additional graphic design courses.

FA 326 Interactive Design Concepts
An exploration of the nature of interactive design and how it informs and transforms experience. Information structures, navigational issues, design strategies and social implications of interactive experiences using traditional as well as electronic media will be examined.

3 credits. One-semester course. May not be repeated. Prerequisite: Graphic Design I or Typography I.

FA 327 Advanced Interactive Design Concepts: Computational Media
An advanced design course in interactive computational media. The course will explore advanced interactive design concepts utilizing software which includes Processing and Macromedia Flash as well as XHTML coding. Students will complete two fully realized independent projects. Analysis of relevant work and readings support group critiques.

3 credits. One-semester course. Prerequisite: Interactive Design Concepts. Pitaru

FA 328 Motion Graphics
Students will explore the conceptual and technical challenges of design for the television screen. All aspects of industry video/broadcast production are introduced and integrated into a design core focused on strong communication. Projects include identity design, combining kinetic typography, animation, sound and video. The course includes workshops in After Effects, Final Cut Pro and Prototools. 3 credits. One-semester course. Pitaru

FA 429 Independent Study in Graphic Design
1-3 credits. Requires approval of instructor and the dean of the School of Art.

FA 337 Advanced Painting
Students will focus on watercolor—through work on canvas and paper. The class will meet two or three times a week for discussions of each other’s work, as well as visits to museum and gallery shows, readings or slide presentations of current work. The course will emphasize experimentation and expansion of one’s visual language and process, and the ability to articulate these ideas in discussion.

3 credits. One-semester course. Bordo

FA 338 Advanced Painting/Water Media
Students will focus on water media—acrylic, transparent watercolor and gouache—through work on canvas and paper. The class will explore the specific technical challenges and characteristics inherent in these media including the range from transparency to opacity. Individual approaches will be encouraged in developing the aesthetics of
the evolving image from spontaneity to studied expression, from figuration to abstraction. Exposure to selected examples of historical and contemporary imagery will be accomplished through slides, exhibitions and gallery or studio visits.

3 credits. One-semester course. L.A. Miller

FA 339 Advanced Painting/Guest Artist Series
This course is for students who have made a strong commitment to painting. Students are expected to work independently in their studios on a series of paintings that will develop during the semester in response to a dialogue with the different guest artists.

3 credits. One-semester course. Bordo

Advanced Painting/Visiting Artists
Course description varies according to the instructor. For fall 2008:

FA 332 This class is open to a wide range of approaches to painting. Students will be encouraged to identify and develop their own sources for ideas and inspiration—from the popular to the esoteric. Attention will be paid to both the quality and vitality of ideas as well as to the form these ideas take. Students will be encouraged to have familiarity with museum and gallery exhibitions. The class will have individual and group critiques and some individual and group reading assignments.

3 credits. One-semester course. Visiting Artist Peter Krashes

FA 336 This course will consist of one-to-one critical, practical and mentoring sessions with each student, as well as class group critiques and discussions. There will be artist friendly readings of books and articles and discussion of those texts. Assigned exhibitions and class trips to galleries and museums will also be discussed and emphasized. There will be importance placed on individual growth, and as advanced painting students, how they will negotiate themselves and work as artists in the real world. The main focus is on the studio and the making of paintings.

3 credits. One-semester course. Visiting Artist Joanne Greenbaum

For spring 2009 and later semesters, please see class schedule and registration materials for course descriptions specific to Visiting Artists teaching that semester.

FA 439 Independent Study in Painting
1-3 credits. Requires approval of instructor and the dean of the School of Art.

Techniques

TE 417.1A Painting Techniques and Materials
Differences in scope, techniques, appearance and behavior between oil-base and water-base media, as well as emulsion techniques, acrylics and other plasters, are covered. Their qualities and limitations are examined through experimentation and comparison. The work of the old masters of the 13th-15th centuries is understood through the study of water-base and emulsion techniques on hard surfaces and gesso grounds. The majority of class time is used to study egg tempera and its derivatives. Elements of ancient paintings are copied to understand certain effects. Students produce work using the techniques learned.

Original paintings are produced by the students in tempera, egg tempera, emulsion, acrylics or encaustic. Students produce an authentic fresco. Execution of a 1:1 detail preparing the ariccio, sinopia and veil of a fresco is required.

2 credits. One-semester course. May not be repeated. Free elective credit. L.A. Miller

FA 418.1 Water Media Techniques
This course provides a foundation for techniques, processes and materials involved in painting with watercolor, gouache and acrylic. The class explores the specific technical challenges and characteristics inherent in these media, including the range from transparency to opacity. Acquaintance with a wide range of brushes, tools, materials, pigments and papers will be offered. A range of approaches will be introduced from traditional to experimental so that the student can acquire mastery of the medium through a variety of experiences. The relevance of technique and imagery to each student’s personal work and interests will be developed through discussions and resource examples.

2 credits. One-semester course. May not be repeated. Free elective credit. L.A. Miller

Photography

Prerequisite Courses

FA 106.1 Photography I
A one-semester course which explores the visual language of photography through both black-and-white and color mediums. Students will learn camera controls through the use of 4x5 and digital cameras. 35mm cameras are optional. Darkroom printing augments class assignments and student projects.* 3 credits. One-semester only. May not be repeated. Osinski/N. Sanders

FA 206 Photography II
The emphasis of this class is on the development of ideas within photo-based work. Student work will be discussed in relation to contemporary art practice as well as significant ideas in the history of photography and in the context of larger cultural issues. Readings and discussions will provide students with a critical backdrop. Fundamentals of digital workflow: calibration of monitors, scanning and color correction will be explored along with medium format cameras and lighting options.* 3 credits. One-semester only. Pre- or co-requisite: Photography I or by permission of instructor. Prerequisite or co-requisite to Advanced Photography. May not be repeated. Osinski/Vahnenkald

*It is recommended that students have digital cameras. Instructors will make camera recommendations on the first day of class for those students who may wish to purchase one.

Advanced Courses

FA 361A Advanced Photography: Large Scale
This course will concentrate on subject matter, methodology, size, scale, genre, style, theory and history of photography. The orientation will be the development of projects, from the inception of ideas to professional presentation and execution of artistic work with an emphasis on making large negatives and/or producing large prints. Students are encouraged to take advantage of the full range of image-making resources available to aid in the creation of works that challenge perceptions. Various options of cameras and large scale printing will be explored.

3 credits. Spring only. TBA

FA 363 Advanced Photography/Digital Photography
This studio course focuses on issues related to digital imaging. Students will explore ideas related to digital work as well as techniques such as color management, various corrective measures, and options in digital cameras and printers. Issues central to photography in the digital era will be explored. Students will pursue individual projects that will be discussed in group and individual critiques.

3 credits. Osinski/N. Sanders

FA 364 Advanced Photography
This course will concentrate on critiques of the students’ work. Personal vision will be the subject and interpretation of the print will be the focus. Individual projects will be set for each student. Students will also be required to see exhibitions as well as research books and other forms of image reproduction.

3 credits. TBA

FA 365A Advanced Photography: Photographic Craft and Technology
Projects provide students with the technical resources to address the broad spectrum of photographic practice. Students learn how to produce photographic prints and transparencies that meet publication standards. Seminars cover an evaluation and application of photographic tools, including digital cameras and scanners.

3 credits. Fall only. N. Sanders
FA 365B Advanced Photography: Studio Photography The course will provide a practical application of FA 365A in a studio setting, including the use of—incandescent and electronic flash light for direct, bounce and diffused illumination as well as various camera formats, films, filters and lenses. Instruction and use of digital cameras and scanners will be included. Weekly assignments and critiques are part of this course. 3 credits. Spring only. Prerequisite: FA365A. N. Sanders

FA 366A Advanced Photography: Alternate Processes A course for students who wish to explore the possibilities of hand-applied photographic emulsions and alternative methods of printing. Processes will include liquid light, cyanotype, palladium, color copier and digital printing options. Student work will be discussed in relation to contemporary art issues. 3 credits. TBA

FA 366B Advanced Photography Students will produce work using photographic material(s), camera or any photographic device of their choice. Work will be discussed in group critiques as well as individual conferences with the instructor. Photographic issues and representation will be the subject of reading and class discussions. 3 credits. Spring only. Osinski

FA 368A Advanced Photography: Guest Artist Series This course is intended to help students clarify and further the growth of their own work through group and individual critiques, classroom discussions, and discussions with contemporary guest artists and the instructor. 3 credits. Osinski

FA 369A Advanced Photography This course is an advanced studio course. Emphasis will be on students’ ongoing studio/history/theory works. The course will consist of a number of faculty-led presentations about particular artists, writers, filmmakers, concepts and exhibitions. Work will be discussed in group critiques as well as individual conferences with the instructor. 3 credits. Fall only. Raad

FA 369B Advanced Photography: The Photograph as Narrative This course will explore multiple-image structures in photography and will include issues and examples of sequencing, time, fictional and non-fictional narratives and meta-narratives and image and text relationships. Studio projects will be combined with lectures, presentations, field trips, readings and class discussions to provide the critical framework leading to the development and production of projects that address traditional as well as experimental methods of multiple-image structures. Projects can include but are not limited to: color/black and white, film/digital/film stills. 3 credits. Spring only. Morton

Advanced Photography/Visiting Artists Course description varies according to the instructor. For fall 2008:

FA 368 Advanced Photography This class will focus on the development of students’ individual projects. Group and individual critiques, classroom discussion, various readings, visits to exhibitions and collection of images through a non-digital visual diary will form the basis of this course. 3 credits. Henry Wolf Chair Merry Alpern (fall 2008)

For spring 2009 and later semesters, please see class schedule and registration materials for course descriptions specific to Visiting Artists teaching that semester.

FA 469 Independent Study in Photography 1-3 credits. Requires approval of instructor and the dean of the School of Art.

Printmaking

Prerequisite Courses

FA 250 Silkscreen I This course explores screen printing as a means of communication with emphasis on the execution of these images. Students visit museums to learn to appreciate posters from various historical periods. The actual screen printing will be taught with the use of images, type and color. The goal of the course is to combine the components of art, printing and communication. 3 credits. One-semester course. May not be repeated. Clayton/Fudge

FA 251 Lithography I An introduction to traditional and contemporary image-making on lithographic stones and commercial aluminum plates, with emphasis on the technical aspect of the medium. The various areas to be examined include stone graining, crayon and tusche drawing, printing, proofing and edition printing procedures, etc. 3 credits. One-semester course. May not be repeated. Nobles

FA 252 Etching I An introduction to etching images on metal plates, through the use of hardground, aquatint softground. The emphasis is on the technical understanding of the medium. Other image-making processes to be covered are drypoint and engraving. 3 credits. One-semester course. May not be repeated. Winkler

Advanced Courses

FA 350 Silkscreen Workshop An advanced workshop in which the students are free to explore screen printing, graphic arts and photography. There will be formal teaching of advanced photographic processes such as halftone and color separation. 3 credits. One-semester course. Prerequisite: Silkscreen I. Clayton

FA 351 Lithography Workshop An advanced workshop concentrating on individual projects and further investigations into the reproducible image and its implications. Discussion and demonstration will be offered both in the direction of a more technical and chemical understanding of lithography and working in conjunction with other traditional print techniques. 3 credits. One-semester course. Prerequisite: Lithography I. Nobles

FA 355 Relief Students will be instructed in various relief printing techniques, including traditional Japanese water-based woodblock and Western techniques with oil-based inks on wood and linoleum. Use of the hydraulic press will allow large format works to be produced. Hand-printing techniques will be taught as well. Small edition printing in multiple colors will be emphasized. 3 credits. One-semester course. Shibata

FA 356 Etching Workshop: Photogravure This class will primarily teach approaches to the 19th century process of photogravure. Photogravure is a truly continuous tone photographic intaglio process. Tonalities are created by an ink layer, gradually varying in depth, with a very fine aquatint to hold the ink. Photogravure will be the starting point for the projects rather than the final step. Students should be open to continuing to work on plates with traditional intaglio techniques. 3 credits. One-semester course. Prerequisite: Etching I or Photo I. Osterburg

FA 459 Independent Study in Printmaking 1-3 credits. Requires approval of instructor and the dean of the School of Art.

Techniques

TE 353.1 Papermaking Techniques This course includes the making of traditional Western paper from rags to a finished sheet and the making of traditional Oriental paper from tree bark to a finished sheet. Students learn to use a pulp beater, dyes, sizings and a small vacuum table for molding the pulp. Simple binding and box-building techniques as well as marbling are demonstrated. 2 credits. One-semester course. Free elective credit. Spring only. DiEdwards
Science
RS 201 Science Topics vary. 3 general studies credits. Required science course. To be taken during the sophomore, junior or senior year. Nudin/Neves/Uglesich
RS 201a Physics/Astronomy A non-mathematical, conceptual and historical introduction to science with emphasis on the unifying principles of physics. Recurrent themes are connections between science and art, differences between science and technology and the evolution of natural philosophy into modern physics. Topics selected from: Newtonian mechanics, astronomy, electromagnet field and optics, the structure of space and time and the atomic nature of matter.
RS 201b Botany
An introductory, scientific study of the plant kingdom and the relationships between plants and people. Topics to be covered include aspects of plant physiology, genetics, morphology, anatomy, ecology, diversity and evolu of plants. The cultural uses of plants for medicine, clothing, food and ritual will also be presented.
RS 201c Science of the Mind
Over the last 10 years there has been a revolution in our understanding of the workings of the mind. This course offers a comprehensive yet accessible survey of these new developments in the understanding of the workings of the brain. It will explore how these discoveries are altering the most basic concepts we have about ourselves and how we perceive the world. The course begins by familiarizing the students with an outline of the anatomy of the brain and its neurological function and then progresses to consider new theoretical models of consciousness. The course also explores the laws of the visual brain and how those laws govern our perception of the visual world.
RS 201d Optics for Artists
This course covers the fundamentals of optics using a non-mathematical approach, relying on provocative demonstrations and hands-on experimentation with an emphasis on explaining phenomena observed in everyday life. Topics will include the nature of light, optical elements (lenses, mirrors, prisms), cameras, the theory of “color,” visual perception and optical illusions, light detection (eye, film, digital cameras) and more advanced concepts of particular interest to the students (holography, lasers, liquid crystals, etc.).

Sound Art
FA 281 Project in Sound Art
This class will introduce strategies for understanding and participating in the aural world. The course is divided into specific weekly topics, including acoustic ecology, circuit-bending, radio transmission, synaesthesia and others. Screenings, readings and dis cussion are supported by hands-on workshops in capturing, manipulating and reproducing sound in unconventional ways. Grading is based on three student projects and participation in class discussions.
3 credits. One-semester course. Poff

Sculpture
FA 391 Sculpture
This course helps students develop projects related to their own vision and ideas. Class discussions address the full range of conceptual and material processes that generate production. Research and development will be given equal weight to finished work. Intention, form, materiality and context will be analyzed against larger questions of culture in relation to artistic practice. Student work will be reviewed by the entire class and by the instructor on an individual basis. Lectures, readings and field trips will complement studio critiques.
3 credits. One-semester course. Adams

FA 393 Sculpture
Students are encouraged to treat this course like a lab. Throughout the semester, a broad definition of studio practice, and of sculpture, will be discussed and encouraged toward an expansion of the ground the student is claiming in his or her education, work and larger, lifelong artistic practice. Through a combination of class critiques, individual conversations with the instructor, off-campus site visits and guest speakers, emphasis will be placed on investigating the complicated relationships between three-dimensional form, choice of materials, methods of production, language and distribution.
3 credits. Raven

FA 394 Sculpture
This course takes a concrete approach to the development of critical discourse about works of art. It exercises the student’s ability to analyze the activity of making sculpture in particular and advances the student’s understanding of how to proceed in the studio. Problems of structure, materials, meaning, intention and context are the subject of class discussion.
3 credits. One-semester course. Logis

FA 395 Sculpture: Performance
Performance or the live event has been a continuous element of art practice throughout most of the 20th century. The changing technologies of sound and digital recording devices and their increasing availability have enhanced the possibilities of documentation and allowed artists to consider the mediation and documentation of a live event as an integral part of the work itself. In this course, students will examine the interaction between performance and its documentation through practical, historical and theoretical interrogation. The class proposes to address documentation, not as inadequate representation nor as nostalgic marker but as something that operates within a distinct system that can become a vital site of art production. This class takes an interdisciplinary approach to making performance work. The medium of performance and its utilization of photography, video and sound will be explored. Students will read and discuss texts, looking at the work of other artists and making their own work.
3 credits. One semester course. Hayes

FA 396 Sculpture: Seminar in Public Art
This course focuses on the production of artworks that question and/or re-invent the boundaries between public and private spheres. Student projects will be generated and analyzed in relation to current transformations in culture and technology as they affect the meaning of “publicness.” Complementing studio production will be lectures, readings and discussions that engage social, political and urban issues relevant to the topic. Traditional approaches to public art, such as enhancement and commemoration will be challenged by more temporal and critical strategies. Historical examples will be examined, including the Flameur, Russian Constructivism, the Situationists, Fluxus and Conceptualism, as well as the most recent example of public interventions.
3 credits. Spring only. Adams

FA 397 Sculpture
This course takes a concrete approach to the development of critical discourse about works of art. It exercises the student’s ability to analyze the activity of making sculpture in particular and advances the student’s understanding of how to proceed in the studio. Problems of structure, materials, meaning, intention and context are the subject of class discussion.
3 credits. One-semester. Ashford/Lins

Sculpture/Visiting Artists
Course description varies according to the instructor.

FA 393 The Sculptor in You
This sculpture course will take on as its subject the element of humor and subjectivity and its relationship to sculpture. The class will engage students within the subject of sculpture from various points of view and positions. There will be a series of readings and discussions presented examining the subject of humor and related subjects such as comedy, failure, the joke and irony. Discouravensness and the structuring of content and its relationship to intent will be an ongoing thread in the class. Research, development, notes, pre-viualizations, image presentations, meetings, critiques and group discussions will comprise the course. Issues regarding craft, digital processes, production and technology and their re-sulting signification will also be an important element in the course.
3 credits. Visiting Artist David Schafer

Spring 2009 and later semesters, please see class schedule and registration materials for course descriptions specific to Visiting Artists teaching that semester.

FA 499 Independent Study in Sculpture
1-3 credits. Requires approval of instructor and the dean of the School of Art.
Techniques

TE 390.1A Casting Techniques

Students will be involved in learning fundamental casting techniques: making waste mold, piece molds and flexible rubber molds. A variety of materials to be cast into these forms will be explored: plaster, ultracal, concrete, plastic and wax. Elementary gating, and investing of small pieces, to burnout for translation from wax to bronze will be a hands-on experience. The centrifugal method of casting will be used primarily, limiting the size of the project. Chasing, soldering and mechanical joining, and patination of the finished pieces will complete the course requirements.

2 credits. One semester course. May not be repeated. Free elective credit. Akvin/Wilhelm
Administration
Saskia Bos, Dean
Sara Reisman, Associate Dean
Judith Cantor Bernstein
Coordinator of Academic Operations
David William
Coordinator of Student Exhibitions and Special Projects
Margaret Wray
Assistant to the Dean
Tia Shin
Administrative Associate
Elizabeth Marshall
Administrative Assistant
Amy Westpfahl
Coordinator, School of Art Admissions

Office of Academic Advisement and Off-Campus Programs
Day Gleeson, Academic Adviser (sabbatical fall 2008)
Christine Osinski
Interim Academic Adviser (fall 2008)
Margaret Morton
Director, Off-Campus Programs
Joyce Bishop, Administrative Associate

Full-Time Faculty
Professors
Dennis Adams
B.F.A., Drake University; M.F.A., Tyler School of Art
Lee Anne Miller
B.S., Utah State University; M.F.A., Cranbrook Academy of Art; Pratt Graphics Center; The Slade School of Art
Margaret Morton
B.F.A., Kent State University; M.F.A., Yale University
Christine Osinski
B.F.A., School of the Art Institute of Chicago; M.F.A., Yale University

Associate Professors
Robert Bordo
McGill University
New York Studio School
Day Gleeson (sabbatical fall 2008)
B.F.A., Rhode Island School of Design
Walid Raad
Rochester Institute of Technology; M.A., Ph.D., University of Rochester

Assistant Professors
Mike Essl (sabbatical fall 2008)
B.F.A., The Cooper Union; M.F.A., Cranbrook Academy of Art
Sharon Hayes
B.A., Bowdoin College; M.F.A., University of California, Los Angeles; Whitney Museum Independent Study Program

Proportional-Time Faculty
Associate Professors
Douglas Ashford
B.F.A., The Cooper Union
Niki Logis
B.A., Brooklyn College, CUNY
David True
B.F.A., M.F.A., Ohio University

Adjunct Faculty
Professors
Jack Barth
B.A., California State University; M.F.A. University of California at Irvine
Larry Brown
B.A., Washington State University; M.F.A., University of Arizona
Jacob Burckhardt
B.A., University of Pennsylvania
Lorenzo Clayton
B.F.A., The Cooper Union
James Craig
B.F.A., The Cooper Union; M.F.A., Yale University
Cara DiEdwardo
B.F.A., The Cooper Union
Stephen Ellis
B.F.A., Cornell University; New York Studio School
Glenn Goldberg
New York Studio School; M.F.A., Queens College, CUNY
Jacqueline Humphries
Parsons School of Design
Mindy Lang
B.F.A., The Cooper Union
Lisa Lawloy
B.F.A., The Cooper Union; M.F.A., Yale University
Pamela Lins
M.F.A., Hunter College, CUNY
Ross G. McLaren
A.O.C.A., Ontario College of Art
Peter Nadin
B.A., University of Newcastle-upon-Tyne, United Kingdom

Emily Oberman
B.F.A., The Cooper Union
Lothar Otterburg
Diploma in Fine Arts, Staatliche Hochschule fur Bildende Kunst, Braunschweig, Germany
R. Scott Richter
B.F.A., Parsons School of Design
Norman Sanders
Champlain College; B.S., New York University
Yasuyuki Shibata
B.F.A., Kyoto Soka University, Japan
Shelly Silver
B.A., B.F.A., Cornell University
Gian Berto Vanni
University of Rome

Instructors
Betsy Alwin
B.A., B.F.A., Mankato State University; M.F.A., Illinois State University
Robert Boyd
Tyler School of Art
Jenny Carrow
B.F.A., The Cooper Union
Warren Corbitt
B.A., Vassar College; M.F.A., Cranbrook Academy of Art
Benjamin Degen
B.F.A., The Cooper Union
Hannes Famira
B.A., KABK Royal Academy of Art (The Hague, NL)
Martha Friedman
B.F.A., School of the Art Institute of Chicago; M.F.A., Yale University
David Gatten
B.A., University of North Carolina Greensboro; M.F.A., School of the Art Institute of Chicago
Alan Gilbert
B.A., University of Colorado at Boulder; M.A., Ph.D. University of Buffalo, SUNY
Beverly Joel
B.F.A., The Cooper Union
Yuri Masnyj
B.F.A., The Cooper Union
Marlene McCarty
University of Cincinnati; Schule fur Gestaltung (Basel)
Yates McKee
B.A., Bard College; Whitney Museum Independent Study Program
Jeremy Mores McWreath
B.F.A., The Cooper Union; M.F.A., University of Southern California
The Albert Nerken School of Engineering will create an educational culture with a commitment to excellence. We will bring together the best and brightest engineering students; we will nurture and develop their talents; we will encourage them to work and learn at their highest levels; and we will instill in them the desire and the ability to use their engineering background to fulfill their potential as knowledgeable, creative and responsible leaders in society.
Overview

With an average enrollment of about 550 students, engineering is the largest of The Cooper Union’s schools. The school maintains small class sizes in courses and laboratories in order to provide for personal attention. It offers bachelor of engineering (B.E.) degree programs in chemical, civil, mechanical and electrical engineering, accredited by the EAC commission of ABET.

In addition, the school offers an interdisciplinary engineering program (IDE), founded in 2003. This program empowers students to create their own curricula (within carefully set parameters) in those areas of engineering that cross traditional boundaries—for example, bioengineering, energy engineering, infrastructure engineering, environmental engineering, electro-mechanical engineering, robotics, etc.

Also available is the BSE program, which offers a less specialized but rigorous engineering education, and provides an excellent preparation for graduate work in law, medicine, business, etc.

The integrated master’s program offers the opportunity to earn both a bachelor’s and a master’s degree at Cooper Union within four, five or six years. A thesis is required.

Another master’s program is being planned; it will be for practicing professionals on a tuition basis. Also, clusters of courses may be offered toward a tuition-based graduate certificate in engineering. This is in keeping with the commitment to provide life-long learning. Both the tuition master’s and certificate programs are in development.

Degree programs are designed to prepare students to enter the profession immediately after graduation or to pursue graduate study. An extraordinary number of Cooper Union engineering graduates have gone on to earn Ph.D. degrees at the nation’s most prestigious graduate schools. Other graduates have gone on to study in fields such as medicine, law or business. Many of our graduates have risen to leadership positions in industry, education and government.

The early curricula in engineering are based on intensive work in the sciences, mathematics, computing and engineering sciences, which serve as preparation for in-depth study within the various engineering fields. Building on a strong base of mathematics and sciences, and emphasizing the integration of knowledge, these curricula are concerned with an understanding of nature, the limitations of our present knowledge and the potential for advancing that knowledge.

Strong mathematical and computer skills are developed in all engineering students. This includes the ability mathematically to model and then to solve problems algorithmically, in a suitable language, and to use existing commercial packages for analysis and design. Students are expected to be fluent in at least two computer languages, and many specialized packages are used both in elective and in required courses. The faculty expect assignments to be carried out using the computer in appropriate ways, both as a design tool using packages and also as a platform for original software.

Defining characteristics of the School of Engineering’s programs are the emphasis on project-based learning and opportunities for undergraduate research. Students and their peers regularly join the faculty in solving real-life problems that exist in contemporary society. Multi-disciplinary teams work together, frequently cooperating with outside professionals, who act as mentors. Superior analytical abilities and thorough grounding in engineering fundamentals and design enable students to participate with faculty members on these research projects. Their results may be published, presented at conferences or even patented.

A strong background in engineering design threads throughout the curriculum, starting with the first year. This design experience takes into consideration factors such as environmental issues, economics, teamwork, societal impact, safety and political climate—showing students that a “design” is much more than a purely technological solution.

Some design problems are offered in collaboration with foreign universities to increase awareness of the global nature of the engineering profession (e.g., Cooper Union’s “Globetech” program).

Ample electives are offered so that interested students can add a background in business and entrepreneurship, additional mathematics and science or a “concentration” in an additional engineering area.

Like Cooper Union’s other schools, the Albert Nerken School of Engineering is intimately involved with the New York metropolitan area. Sometimes, the city and its infrastructure are used as a laboratory. The school also draws on the region’s abundant talent and resources, including an outstanding array of engineers and scientists employed at major corporations, governmental agencies and consulting firms in the New York region. The school calls on physicians, lawyers and other specialists to collaborate in research and mentoring and to give unique insights into contemporary problems and social issues confronting modern engineers.

Students benefit from close contact with the faculty, who are devoted teachers, and the school’s loyal alumni, who delight in sharing their experiences and insights with students, and in serving as role models. Our students are encouraged to participate in Cooper Union’s rich seminar and cultural programs as well as to attend talks by guest speakers. They join various appropriate professional societies, many of which have chapters at Cooper Union. Students are inspired to qualify for membership in national engineering honor societies. They also participate in student government and sports, and take advantage of the vast cultural environment offered by New York City and the neighborhood.
In preparation for their responsibilities as engineers who are affected by the dynamics of technological advance and social change, students are exposed to and challenged in the fields of social science, humanities, and other general studies. Graduates of Cooper Union are recruited regularly by major national and international corporations and graduate schools nationwide. Alumni are found in the top management and research leadership of many American corporations; hold key positions in federal, state and city agencies; and distinguish themselves on university faculties and administrations nationwide. Through their many and varied professional accomplishments, alumni have earned for the school its reputation for excellence.

The Cooper Union Computer Center (CUCC) is available to all students and faculty. It provides a centralized administration and technological support for all academic computing needs, and allows students to take advantage of rapidly emerging hardware and software technologies. The center maintains an ample supply of computers of all major types—Intel™ based machines, Apple Macintosh™, Sun Microsystems™, IBM™ are examples. The machines are concentrated in computer classrooms, offices, laboratories, the residence hall and special centers.

The Computer Center is fully networked, utilizing the UNIX operating system and a high bandwidth TCP/IP backbone to provide a rich and reliable computing environment. It is locally accessible through the intranet, which connects all but specialized stand-alone systems. Students have access to all of the major operating systems such as the varieties of Microsoft Windows™, Solaris™, Linux™ and Mac/OS™.

The Computer Center has both formal classroom instructional facilities and informal drop-in accommodations. Currently, there exist no restrictions or charges for computer time and availability of machines is widespread.

A full complement of applications, programming languages and internet tools are available. Multimedia hardware includes audio/video capture and output, print and film scanners, digital cameras, CD burners and large-format color plotters.

Data communications with the outside community are maintained via multiple dedicated high-speed internet connections. Students and faculty have access to software packages and programming languages on the local network and can download content from all internet sites worldwide. Students are expected to pay careful attention to copyright and ethical uses of the internet and to conduct themselves professionally at all times.

Brooks Design Center
A specially equipped design center was created with high-powered workstations capable of running the computationally intensive graphical design software used in the engineering profession. The center houses high-resolution inter-networked machines together with sophisticated audio-visual equipment for demonstrations and instruction. Break-out seminar rooms connect to the laboratory and are equipped for video-conferencing.
C.V. Starr Research Foundation

The C.V. Starr Research Foundation, whose forerunner was established in 1976 as The Cooper Union Research Foundation, is a not-for-profit corporation and sponsors many of the research projects in the School of Engineering. By encouraging and supporting research, the foundation augments the educational opportunities for students, enhances professional development of faculty, promotes multi-disciplinary research and serves the community through its research and development efforts and as a sponsor of public seminars and conferences.

Participation in research activities by faculty and students is essential to the vitality of the educational programs. In attempting to meet this objective, The C.V. Starr Research Foundation plays an important role for faculty and students having research talent who wish to pursue sponsored research individually or in concert with other faculty and students. The foundation facilitates collaboration with other universities, hospitals, industry and government.

Projects undertaken by The C.V. Starr Research Foundation are externally funded. Faculty serve as project directors, assisted by other faculty members, outside consultants and undergraduate and graduate students of Cooper Union.

The C.V. Starr Research Foundation is poised to support all programs in all of the schools at Cooper Union, both at the undergraduate and graduate levels, by providing real-life research projects throughout the curriculum. To this end, four inter-disciplinary research centers have been developed:

The Maurice Kanbar Center for Biomedical Engineering, where research has begun in orthopaedic bio-mechanics, tissue engineering, rehabilitation, neurology, etc. This center has established collaborative relationships with several hospitals and medical research institutions in the New York City area.

The Center for Urban Systems and Infrastructure has started research in the areas of urban security and protective design, infrastructure rehabilitation, new energy technologies, acoustics and noise abatement and sustainable environment. Industrial partnerships have been formed with various corporations and government agencies. The Cooper Union Institute for Urban Security operates under the auspices of this center, and the following institutes are being developed:
- The Institute of Water Resources and the Environment,
- The Institute of Renewable Energy and
- The Institute for Soil Structure Interaction and the Underground Built Environment.

The Center for Materials and Manufacturing Technology will be engaged in research in composite materials, fire-resistant and blast-resistant materials, robotics, mechatronics, nanotechnologies and nano-biosensors. The center will also be active in innovative product design and automation.

The Center for Signal Processing, Communications and Computer Engineering (S*PROCOM) Research has begun in magnetic resonance imaging in collaboration with medical research institutions in New York City. Partnerships and collaborative research will be established in other areas such as: wireless technologies, communications network security, quantum computing and nano processors, distributed computing, sensor arrays, artificial neural and sensory systems, multimedia systems, financial engineering and intelligent control.

Also active is a **Center for Sustainable Engineering, Art and Architecture—Materials, Manufacturing and Minimalization (SEA*M)**, which involves projects within engineering, art and architecture.

Each of the centers aims to draw upon the varied faculty expertise across Cooper Union and uses laboratory resources in the School of Engineering, as well as the resources of the Schools of Art and Architecture.

Recent research sponsors of The C.V. Starr Research Foundation include Zimmer, Pfizer, EPRI, Con Edison, the National Security Agency, the City of New York Departments of Transportation, Environmental Protection and Design and Construction, Transpo, Lucent, NYSERDA, the U.S. DOE, Lenox Hill Hospital, Verdant Technologies and The Howard Hughes Medical Institute.

The C.V. Starr Research Foundation has a proprietary interest in several new technologies, all of them patented and most of them developed at Cooper Union. Examples include several patents in asphalt technology, a clean-coal burning technology, an innovative hydro-electric generation process, fuel-cell processes, a micro-balance sensor and several patents in telecommunications and environmental measurement devices.
The requirements for the bachelor’s degree programs must be completed within four years of first registration, except with the explicit consent of the dean/associate dean. Requests for extension must be presented in writing to the dean’s office prior to the sixth semester of registration (or the end of the junior year). It is the responsibility of the student to maintain normal and reasonable progress toward the degree. If courses are made up elsewhere for credit, the student is responsible for all costs incurred. Prior appropriate adviser(s) approval is required.

If a student elects to take additional courses at other institutions, he or she must do so (a) with prior academic approval if transfer credit is desired and (b) at their own expense. Additionally, ABET accreditation requires:

- one year of a combination of mathematics and sciences (some with experimental experience) appropriate to the discipline
- one and a half years of engineering topics consisting of engineering sciences and engineering design appropriate to the student’s field of study and,
- a general educational component that complements the technical content of the curriculum and is consistent with the program and institutional objectives.

In order to graduate, all students must meet the following conditions:

- A minimum of 135 credits are required;
- Satisfaction of all program curricula;
- Satisfaction of the residence study requirements;
- A minimum grade point average (G.P.A.) of 2.0;
- A minimum grade point average (G.P.A.) of 2.0 for the junior and senior years combined.

Humanities and Social Sciences The requirements in this area are satisfied by courses offered by The Cooper Union Faculty of Humanities and Social Sciences or by transfer credit for liberal arts courses taken at other institutions. The courses in this area are intended to provide both breadth and depth and should not be limited to a selection of unrelated introductory courses.

The Cooper Union liberal arts courses, shown elsewhere in the Faculty of Humanities and Social Sciences catalog section, have prefixes H, S and HTA. The basic courses HSS1–HSS2 and HSS3–HSS4 are prerequisites for all higher level courses in the same prefix family. H and S courses carry three credits each; HTA courses carry two credits. Engineering students should consult with the dean of Humanities and Social Sciences about choice of courses to satisfy particular interests.

Transfer credits for liberal arts courses must be approved by the dean of Humanities and Social Sciences. Courses that cannot be used to satisfy the Humanities and Social Sciences requirement are:

- language skills courses such as introductory foreign language, public speaking, report writing;
- craft and performance courses unless accompanied by theory or history;
- subjects such as accounting, finance, engineering economy, industrial management, personnel administration.

Some programs require “free electives or non-technical electives.” For transfer credit for particular courses, the School of Art or the School of Architecture may be a more appropriate authority to sanction the transfer. Students who are uncertain should approach the Office of the Dean of Engineering in the first instance and be directed to the correct group of faculty.

Program Requirements The specific programs for entering students are shown in detail in the curriculum tables.

Course Substitutions and Credits A student may request to substitute for a required course or courses given in the School of Engineering provided that:

- the substitution is limited to 12 credits maximum toward the total number of credits required for graduation,
- the substitution is approved by the dean/associate dean and program adviser(s) and
- ABET accreditation requirements are not violated.

The number of academic credits for each course generally is based on the following relationship:

- 1 credit per contact hour in class
- ½ credit per contact hour of laboratory

This relationship was established on the basis that generally two hours of preparation are expected of the student for every contact hour in class or project activities and generally one hour of preparation is expected for every contact hour of laboratory. (The Chemical Engineering Department does not permit the substitution of any courses for required courses.)

Residence Study Requirement A candidate for a bachelor’s degree must be enrolled during the entire academic year immediately preceding the granting of the degree and must carry at least 12 credits per semester during that period. Also, the candidate must have been enrolled for a minimum of four semesters at Cooper Union as a full-time student for the bachelor’s degree.

Students may petition the dean/associate dean for reconsideration in the Dean’s List after the incomplete (I) has been made up.
Honors and Special Programs

Dean’s List The Office of Admissions and Records determines a Dean’s List twice a year, at the end of each semester, on the basis of the record of the completed grade in every subject at the official end of the grading period. To qualify, a student must have a 3.5 or better semester grade point average for a study program of at least 12 credits during that semester with no grade lower than C and no grades of Incomplete (I). 2

Course Overload A student having a grade point average of 3.0 or better may elect to take an overload of one course in any given semester. In all other cases of overload, approval of the student’s academic adviser(s) and the written approval of the dean/associate dean of engineering must be obtained. Overload beyond 21 credits requires the written permission of the dean/associate dean and no overload is permitted for students with a prior semester G.P.A. of less than 3.0 or a cumulative G.P.A. of less than 3.0.

Graduation with Honors Each graduating senior in the School of Engineering who has achieved an overall cumulative rating of 3.8 or higher is awarded the degree with the notation summa cum laude. Magna cum laude requires a G.P.A. of 3.7 or higher and cum laude requires at least a 3.5 G.P.A.

Faculty Advisers All first-year students have the same faculty adviser. For subsequent years, students will be assigned one, two or more advisers each, appropriate to their field of study. Each student’s program is established in consultation with his or her adviser(s); changes may be made only with the adviser(s)’s approval. Advisers for IDE and BSE students will be assigned according to the student’s educational interests and goals.

Curricular Transfers Students wishing to change their course of study should first discuss their interests with the current adviser(s) in both the current and the new speciality areas. Transfer is at the discretion of the dean’s office and the receiving department or the IDE committee. It may be affected by the student’s grades and availability of program resources. It becomes effective when the required petition form, approved the dean or associate dean of engineering, has been delivered to the Office of Admissions and Records. First-year students may not change their area of study until the end of the year when two semesters’ grades are available. A G.P.A. of 3.0 or better is required for approval to transfer curriculum.

Transfer Credit Students, at their own expense, desiring to register for courses at another institution for transfer credit to Cooper Union must have appropriate advance approval. For courses in mathematics, sciences or engineering, this approval is to be obtained from:
- the department responsible for the course at Cooper Union and
- the dean or associate dean of engineering. For liberal arts courses, approval is to be obtained from the dean of Humanities and Social Sciences. In order that transfer credits from another school be accepted, a grade of B or better is required. An exception may be granted in special circumstances only upon formal appeal to the Committee on Academic Standards.

Transfer credit is never granted for paid summer internships or work experience or paid or unpaid research.

Pre-Medical, Pre-Law or Pre-Business Studies Upon completion of the engineering degree, some graduates may decide to attend medical, dental, business or law school. The prerequisites for such a course of action are offered at Cooper Union. For medical school or dentistry, students are advised to take one year of organic chemistry and one year of biology. For law or business, additional economics, political science and professional ethics courses are useful. Students should consult their adviser(s).

Study Abroad Cooper Union offers suitably qualified, approved students the opportunity to participate in research programs at various foreign universities during the summer. For example, students have attended universities in England, Ireland, Scotland, Australia, Hong Kong, Germany, China, Japan, Italy, Spain, Ghana and France. Cooper Union credit (up to six credits at the 300 level) is granted upon successful completion of the research work, presentation of a written report and its approval by the Office of the Dean. Applications are available in the dean’s office in mid-January. (Students on probation are ineligible for this program). Credit is only allowable for exchange programs authorized by The Cooper Union School of Engineering.

Professional Development Mastering the technical aspects of an engineering field is only part of being a successful engineer. There are many other areas that go toward building and continuing a professional career.

The School of Engineering has established the Aba and Leja Lefkowitz Program for Professional Development to strengthen the non-technical attributes required of its engineering undergraduates. Under this umbrella, a number of successful Cooper Union initiatives have been consolidated to provide a
comprehensive program of experiences and training for all engineering undergraduates.

This training is provided through zero-credit courses of seminars and workshops that span a student’s career at Cooper Union. Attendance at the seminars and workshops is mandatory for engineering freshmen and sophomores. The courses are designed to introduce students to the profession of engineering, as well as deal with their professional development. Cooper Union’s CONNECT (Cooper’s Own No Nonsense Engineering Communication Training) program is an integral part of these courses and provides intensive, regular training in effective communication. A wide range of topics is covered (in addition to communication skills) including ethics, environmental awareness, life-long learning, career development, conflict resolution, entrepreneurship, marketing, workplace issues, professional societies, professional licensure, organizational psychology, teamwork skills, etc. These topics are dealt with using methods such as case studies, role playing and interactive activities—“learning by doing.” In addition, guest professionals, experts and alumni participate where appropriate.

These experiences make students aware of the importance of the non-technical skills needed for professional success. Through this program students are given significant help in easing the transition into the workplace and ensuring success there.

Engineering Advisory Council

The School of Engineering is advised in key engineering issues, such as leadership, ethics, communication skills, entrepreneurship and corporate responsibility, by its Advisory Council, which is comprised of company presidents, CEOs, Nobel Laureates, engineers, physicians, attorneys and other business and professional experts. The Council meets annually with faculty and students to discuss important issues in engineering education. In addition, the Technology Transfer Advisory Committee is made up of appropriate individuals to advise students and faculty about issues such as patents, commercialization of inventions, entrepreneurship, etc.

Gateway Engineering Education Coalition

Cooper Union participated in the National Science Foundation (NSF)–sponsored Gateway Engineering Education Coalition with Columbia University, Polytechnic University, New Jersey Institute of Technology, Drexel University, Ohio State University and the University of South Carolina. The object of the coalition was curricular innovation and exploration of new pedagogical methods. Participation has had a strong influence on teaching, learning and assessment methodologies at the School of Engineering. A process of continuous quality improvement is in place.

Academic Integrity

Plagiarism is the presentation of another person’s “work product” (ideas, words, equations, computer code, graphics, lab data, etc.) as one’s own. Whether done intentionally or unintentionally, plagiarism will not be tolerated in the School of Engineering.

There are many types of plagiarism, some of which are listed below. (The list is not exhaustive. Speak with the appropriate faculty member or the dean or associate dean of engineering if you are uncertain as to what constitutes ethical conduct in a particular situation.)

You are plagiarizing if:

- You present as your own work product a homework assignment, a take-home exam or a class project that includes the efforts of other individuals. The contributions of other individuals (if permitted by your instructor) must be acknowledged in writing on the submitted assignment, exam or project.
- You copy the work of other students on an in-class examination or communicate with other individuals in any fashion during an exam.
- You submit as part of a homework assignment, take-home exam or class project material that has been copied from any source (including, but not limited to, a textbook, a periodical, an encyclopedia, the internet) without properly citing the source, and/or without using quotation marks. It is also prohibited to submit such materials in a minimally altered form without proper attribution. Improperly copied material might include text, graphics (computer or otherwise), computer source code, etc.

Other prohibited acts of academic dishonesty include (but are not limited to):

- Attempting to obtain a copy of an examination before it is administered.
- Dishonesty in dealing with a faculty member or a dean, such as misrepresenting the statements of another faculty member.
- Bringing notes into an examination when forbidden to do so.
- Bringing any device into an examination (computer/PDA/calculator), which permits the retrieval of examination-related materials unless expressly permitted by the instructor.
- Bringing any device into an examination that allows communication with other individuals or computers or computer databases unless expressly permitted by the instructor.
Faculty members may not unilaterally resolve incidents of academic dishonesty. Each faculty member is required to report all cases of plagiarism or academic dishonesty to the engineering dean’s office on an Academic Integrity Incident form. If documentary evidence of the incident exists, it should be attached to the form. The dean’s office, in consultation with the faculty member and the student, will select from the following sanctions: a grade of F for the assignment, a grade of F for the course or dismissal of the student from the school. A record of all incident forms will be kept in the dean’s office and second-time offenders are candidates for dismissal from the school. Students who are dismissed because of academic dishonesty should be aware that incident reports and any responsive actions by the dean’s office or Academic Standards Committee become part of their permanent record.

Sexual or Racial Harassment
Such behavior will not be tolerated. Incidents should be reported immediately. Students should see the dean or associate dean, and also the dean of students as soon as possible.

Code of Conduct
Students are required to read and abide by the code of conduct published by the Office of Student Services.

The definitions below deal with the student’s attainment in the formal work of the subject. Nevertheless, it should be understood that such essential qualities as integrity, adherence to class regulations, enthusiasm, motivation, clarity in presentation of work and sense of obligation, together with ability to use the English language correctly and intelligibly, are reflected in the grade. The course grade is assigned by the instructor in conformity with definitions indicated in this section.

The grade A indicates a superior and comprehensive grasp of the principles of the subject. It denotes an ability to think quickly and with originality toward the solution of difficult problems.

The grade B indicates evidence of a good degree of familiarity with the principles involved in the subject. It implies less originality and a tendency to hold to patterns of thought presented in the formal subject matter.

The grade C indicates an average knowledge of the principles involved in the subject and a fair performance in solving problems involving these principles. This grade implies average ability to apply the principles to original problems.

The grade D indicates a minimum workable knowledge of the principles involved in the subject. This grade denotes low achievement and therefore the number of such grades permitted any student is limited in a manner prescribed by the section on Scholastic Standards.

The grade F indicates unsatisfactory understanding of the subject matter involved. A grade of F may be made up only by repeating the subject in class; both the new grade and the new credits and the original grade and credits are included in the permanent record and in the grade point average. A student who receives an F grade in a repeated course is a candidate for dismissal by the school’s Academic Standards Committee.

The Incomplete (I) Grade
The designation of I indicates that the work of the course has not been completed and that assignment of a grade and credit has been postponed. This designation will be given only in cases of illness (confirmed by authorized physician’s letter) or of other documented extraordinary circumstances beyond the student’s control. The I designation will be given only with the approval of the dean or associate dean of engineering. At the time of submission of an I designation, the instructor will indicate whether the student’s progress to that point has been satisfactory or unsatisfactory, offering an estimation of grades whenever possible as a means of assisting the Committee on Academic Standards in their deliberations.
The deadline for removal of an I designation will be determined by the instructor, but will not be later than six weeks after the start of the spring semester for students who receive such a designation in the fall semester and not later than two weeks after the start of the fall semester for students who receive such a designation in the spring semester. If the I is not removed within the set time limit, either by completing the work in the subject or by passing a re-examination, the I will automatically and irrevocably become an F unless the dean or associate dean of engineering, in consultation with the instructor, extends the time or the student withdraws from the school.

Dropped Courses and Withdrawals

Change of program, 1st and 2nd week See General Regulations, page 15. Dropping a course during this period of classes constitutes a program adjustment. The course will not be entered on the transcript.

Adding Courses Courses, including independent study, may not be added after the second week.

 Dropping courses, weeks 3–8 A student anticipating inability to continue an assigned program should immediately seek counseling. A student’s program may be adjusted at the discretion of and after conference with the adviser(s) and the dean or associate dean of engineering, but only in cases where scholastic performance is handicapped by conditions beyond the control of the student, such as health or home conditions. This should be done during the first eight weeks of the term.

The designation W indicates that the student has withdrawn from the course. For credit, the course must be repeated.

 Dropping Courses after the 8th week A student may lighten his or her academic load and receive a W grade after the eighth week of classes only with the approval of the course instructor, the adviser(s) and the dean/associate dean. It is the policy of the faculty and the Office of the Dean of Engineering not to approve any withdrawal after the eighth week of classes except under extreme, extenuating circumstances. The designation WU indicates that the student has withdrawn from a course without permission of the dean or associate dean of engineering and notification of the dean of Admissions and Records. However, the instructor is free to record an F grade in such cases; the W grade is not applicable.

 Repeating a course When a course is repeated (due to failure or any other reason), the grade earned each time the course was repeated is calculated into the G.P.A.

Grade Point Average or Ratings To determine academic ratings, numerical equivalents are assigned to grades as follows: A is represented by 4, B by 3, C by 2, D by 1 and F by 0. The sum of the products of credits attempted and grade equivalents earned in a period at Cooper Union, divided by the sum of credits for that period, is the rating for that period.

Only Cooper Union grades of A, B, C, D and F will be used in determining ratings. Grades from other colleges and other designations such as I and W are not used in Cooper Union ratings.

Grade Changes A change in an official grade of record, other than the designation I, cannot be made by the dean of Admissions and Records without the express consent of the dean or associate dean of engineering. Grade changes will not be accepted after one year has elapsed from the completion of the course.

Final Examinations Final examinations are held in most subjects. They sometimes are not held in subjects whose content does not readily lend itself to formal examination, such as laboratory or project work. In certain other subjects, the class record may be ample for determining student standing. The decision on giving a final examination in a given subject is made by the instructor.

Academic Probation, Withdrawal, Dismissal Probation is the consequence of unsatisfactory scholarship. It is a warning that may involve a compulsory reduction of academic load, interviews with an assigned adviser and additional academic counseling. A student on academic probation must fulfill conditions as prescribed by the Committee on Academic Standards.

- A student whose semester grade point average is 1.5 and below is on automatic probation and is a candidate for dismissal by the Committee.
- A student whose semester grade point average falls between 1.6 and 2.0 is on automatic probation. Two semesters of automatic probation may cause the student to be a candidate for dismissal by the Committee.
- Estimates of grades in subjects with I designations may be included in all Committee deliberations.
- Students who fail to register will have their records annotated: "Dropped: Failure to Register."
- A student who is obliged to leave school for one semester or one year must petition the dean or associate dean of engineering for permission to withdraw. If a medical situation is a factor, consultation with the dean of students may be required. A student who has withdrawn may apply for readmission to the appropriate department and to the dean or associate dean of engineering. A change in circumstances that indicates that the educational program
The integrated bachelor/master of engineering program is intended to integrate work at the undergraduate and graduate levels and prepare graduates for entry into the engineering profession at an advanced level or for further graduate study. It affords diversification and versatility by requiring a student to elect a field of study—the major—offered in the School of Engineering, and a minor in a different field of engineering or science; this provides depth and breadth. The school offers master’s degrees in chemical engineering, civil engineering, electrical engineering and mechanical engineering. An interdisciplinary master’s degree program is being developed.

The faculty have determined that IDE and BSE graduates are eligible for admission to the graduate program. Such graduating students must join the chemical, civil, electrical or mechanical programs, and may be required to “make up” fundamental courses by the department.

Admission Procedure Please refer to the “Application and Admission Information” section, pages 9–15.

General Requirements Applicants are expected to have a superior undergraduate record and to have given evidence of ability for independent work. Students are accepted on an academically competitive basis subject to the availability of an adviser and of suitable available facilities.

Cooper Union undergraduates To be eligible for admission to the integrated bachelor/master program, one must be a currently enrolled Cooper Union undergraduate, with a minimum 3.0 grade point average according to the major. For IDE students, a 3.0 grade point average is required in all engineering courses. Consult with the program faculty. Generally, students entering Cooper Union undergraduate programs as first-year students require four, five or six years to complete the integrated bachelor/master of engineering program.

Specific admission requirements may be waived upon recommendation of the faculty in the area of the student’s major interest.

It is planned that, in the future, all master’s students not in the integrated bachelor/master program will be admitted on a tuition-paying basis. This includes former graduates of Cooper Union as well as graduates from other ABET-accredited programs. Admitted students may be required to register for advanced engineering courses to make up for any deficiencies in their preparation.

Certificate Programs The School of Engineering is developing packages to be offered to practicing professionals in various areas upon completion of 12 graduate credits. All students in certificate programs will be required to pay tuition.
The designation of a course offered in the School of Engineering uses an alphabetical prefix and a three-digit numbering system. The first digit usually denotes:

1. lower level undergraduate courses,
2. advanced undergraduate courses and
3. graduate courses.

Course Prefix

- Biology: Bio
- Chemical Engineering: ChE
- Chemistry: Ch
- Civil Engineering: CE
- Computer Science: CS
- Electrical Engineering: EE, ECE
- Engineering Sciences: ESC
- Interdisciplinary Engineering: EID
- Mathematics: Ma
- Mechanical Engineering: ME
- Physics: Ph

Students should consult official class schedules for courses offered in a given semester. There is no assurance that a course listed in this catalog will be given every year.

Be advised that each school at Cooper Union offers certain electives that are open to all students; consult each school’s course listing.

Unless otherwise indicated, credit listings are for single semesters.

Courses are not generally offered in the summer.

Definitions

- A **free elective** is any course for which a student is qualified given within Cooper Union.
- The status **advanced engineering elective** is to be determined by the adviser(s) and the Office of the Dean. Normally, such courses will require prerequisites and are usually taken by juniors, seniors or graduate students.
- A **core elective** is defined as any course required in either the first, second or third year of the CE, ChE, EE or ME programs.
- A minimum of 12 credits of engineering electives must be at an advanced level.
performance, and in learning limitations of theoretical concepts. In the senior year, the student learns how to design chemical plants from fundamental data on new processes and to recognize areas of limited knowledge from the results of the design, and thus recommend pilot plant studies, if necessary.

Chemical engineering graduates find employment in a wide variety of areas. In addition to the chemical and petroleum industries, chemical engineers are involved heavily in the biomedical, materials and environmental fields. A chemical engineering education can also be easily applied to other interdisciplinary areas such as biochemical and biomedical engineering, energy resources, environmental engineering and materials resources. As a result, chemical engineers are also finding employment in non-industrial institutions such as government, research think-tanks, policy study groups and even publishing companies.

Note that the chemical engineering department does not make use of the 12-credit rule.

Minors
A minor can be obtained by a student in chemical engineering taking any four (4) classes in one of the fields below. The courses listed are examples of courses currently in the Cooper Union catalog. Note that some may require prerequisites or permission of the instructor. Additionally, note that it will not be necessary to obtain a minor in any field in order to graduate with a bachelor of engineering in chemical engineering.

Environmental Engineering
ChE 340/Industrial Waste Treatment, CE 141/Environmental Systems Engineering, CE 142/Water Resources Engineering (also EID 142), CE 346/Hydraulic Engineering, CE 348/Environmental and Sanitary Engineering (also EID 348), EID 141/Air Pollution Control Systems, CE 414/Solid Waste Management, CE 435/Geo-Environmental Engineering (also EID 435), CE 440/Industrial Waste Treatment Design, CE 441/Water and Wastewater Technology, CE 446/Pollution Prevention or Minimization, CE 447/Stream and Estuary Pollution, CE 449/Hazardous Waste Management.

Biomedical Engineering
ECE 343/Bio-instrumentation and Sensing, EID 120/Foundations of Bioengineering, EID 121/Biotransport Phenomena, EID 122/Biomaterials, EID 123/Biosystems and Instrumentation, EID 124/Bioengineering in Safety Design and Injury Analysis and Prevention, EID 125/Biomechanics, EID 320/Special Topics in Bioengineering, EID 325/Science and Application of Bioengineering Technology, EID 326/Ergonomics, EID327/Tissue Engineering, Ch 340/Biochemistry (also Bio 102), Bio 101/Molecular and Cellular Biology, ECE 422/Selected Topics inEmbedded Systems, ME 421/Rehabilitation Engineering (also EID 421), ME 423/Measurement of Human Performance (also EID 423), EID 424/Bioengineering Applications in Sports Medicine, Ch 440/Biochemistry II.

Energy Engineering
ME 151/Energetics (also EID 151), ME 133/Air-Conditioning, Heating and Refrigeration (also EID 133), ME 330/Advanced Engine Concepts, ME 334/Combustion (also EID 334), ChE 421/Advanced Chemical Reaction Engineering, ChE 434/Special Topics in Combustion (also ME 434), ChE 435/Transport Processes in Internal Combustion Engines (also ME 435), ECE 422/Selected topics in Embedded Systems, Ph 462/Nuclear Physics.

Applied Chemical Technology
ChE 311/Introduction to Polymer Technology, ME 313/Science of Materials for Engineering Design (also EID 313), ME 314/Introduction to Composite Materials (also EID 314), ESC 310/Solid State Materials, Ch 364/Solid State Chemistry, Ph 319/Introductory Quantum and Solid State Physics, ChE 411/Polym er Technology and Engineering, ME 410/Materials, Manufacturing Process (also EID 410).

Note: You will be given a letter by the chemical engineering Department certifying that you have completed a minor.

Graduate Program
In addition to advanced courses in chemical engineering and other areas, the student must complete a thesis for the M.E. degree. The candidate must choose a full-time Cooper Union faculty member from either the chemistry or chemical engineering department as one of his or her thesis advisers. Before choosing a thesis topic, however, the student should explore various professors’ research interests. Research interests of chemical engineering faculty members include non-Newtonian flow, crystal growth from high-temperature melts, polymer extrusion, heat and mass transfer with change of phase, drag coefficients in dense phase transport, construction of a database of engineering materials, mathematical modeling of bio-heat transfer in micro-circulation, mathematical modeling of whole-body heat transfer, analysis of oxygen transport in the cardiovascular system and an integrated gasification process for the simultaneous disposal of sludge and garbage with concomitant production of steam and electricity, biochemical separation, protein-purification, environmental engineering and mathematical modeling.
Chemical Engineering Program

Freshman Year

Fall Semester:
ESC000.1 Professional Development Seminar 0
Ma 110 Introduction to Linear Algebra 2
Ma 111 Calculus I 4
Ch 110 General Chemistry 3
EID 101 Engineering Design and Problem Solving 3
CS 102 Introduction to Computer Science 3
HSS 1 Literacy Forms and Expressions 3
Total Credits Fall Semester 18

Spring Semester:
ESC000.2 Professional Development Seminar 0
Ma 113 Calculus II 4
Ph 112 Physics I: Mechanics 4
Ch 111 General Chemistry Laboratory 1.5
Ch 160 Physical Principles of Chemistry 3
HSS 2 Texts and Contexts: Old Worlds and New 3
Total Credits Spring Semester 15.5

Sophomore Year

Fall Semester:
ESC000.3 Professional Development Seminar 0
ESC 170 Energy and Material Balances 3
Ma 223 Vector Calculus 2
Ma 224 Probability 2
Ph 213 Physics II: Electromagnetic Phenomena 4
Ph 291 Introductory Physics Laboratory 1.5
Ch 231 Organic Chemistry I 3
HSS 3 The Making of Modern Society 3
Total Credits Fall Semester 18.5

Spring Semester:
ESC000.4 Professional Development Seminar 0
Ma 240 Ordinary and Partial Differential Equations 3
Ph 214 Physics III: Optics and Modern Physics 3
Ch 232 Organic Chemistry II 2
Ch 233 Organic Chemistry Laboratory 2
ESC 130.1 Chemical Engineering Thermodynamics 3
HSS 4 The Modern Context: Figures and Topics 3
Total Credits Spring Semester 16

Junior Year

Fall Semester:
ECE 121 Basic Principles of Electrical Engineering 2
Ch 251 Instrumental Analysis Laboratory 2
Ch 261 Physical Chemistry I 3
ChE 131 Advanced Chemical Engineering Thermodynamics 3
ESC 140 Fluid Mechanics and Fluid Systems 3
Engineering or Science Elective 3
Total Credits Fall Semester 16

Spring Semester:
Ch 262 Physical Chemistry II 2
ChE 121 Chemical Reaction Engineering 3
ChE 141 Heat Transmission 3
ChE 151 Process Simulation and Mathematical Techniques for Chemical Engineers 3
Engineering or Science Elective 3
Free Elective 3
Total Credits Spring Semester 17

Senior Year

Fall Semester:
ChE 162.1 Chemical Engineering Laboratory I 1.5
ChE 161.1 Process Evaluation and Chemical Systems Design I 3
ChE 142 Mass Transfer Processes 4
ChE 152 Chemical Process Dynamics and Control 3
Engineering or Science Elective 3
Humanities/Social Sciences Elective 3
Total Credits Fall Semester 17.5

Spring Semester:
ChE 162.2 Chemical Engineering Laboratory II 1.5
ChE 161.2 Process Evaluation and Chemical Systems Design II 3
ESC 110.1 Materials Science for Chemical Engineers 3
Engineering or Science Elective 3
Free Elective 3
Humanities/Social Sciences Electives 3
Total Credits Spring Semester 16.5

Total credits required for degree 135
Information and definitions of programs for students admitted in fall 2008 or later

Faculty
J. Ahmad (Chair), Cataldo, Guido, Tzavelis, Yapijakis

Mission Statement
To prepare our students as civil engineering professionals who will have the depth and breadth of knowledge, sense of social and ethical responsibility, commitment to a safe environment and a desire to serve the society in leadership positions.

Program Objectives
- Our civil engineering graduates will engage in life-long learning to stay abreast of the latest body of knowledge and professional practices in civil engineering and allied disciplines throughout their careers.
- Our graduates will excel in teamwork, interdisciplinary concepts, organizational skills and problem-solving methodologies in their professional careers.
- Our graduates will attain positions of leadership as professional practitioners, government officials, academicians, inventors, researchers, etc. during their professional careers.
- Our graduates will have a strong sense of commitment to excellence, independent thinking, innovation and modern professional practices throughout their careers.

Program description
Civil engineering, earliest of the engineering professions, has evolved into a broad spectrum of specialities: structural, geotechnical, hydraulic, environmental, transportation, urban planning, construction management, sustainable design, urban security and infrastructure rehabilitation. Depending on his or her interests and abilities, the modern civil engineer also may become involved in research, design and development related to projects in alternative energy sources, space structures, protection against natural and man-made disasters, etc. The civil engineer also studies and develops new materials, new structural systems and new strategies for optimizing design. Basic research, especially in the areas of applied and experimental mechanics, often arises either as a preliminary or adjunct requisite to these studies.

Graduate Program
Completion of the master of engineering degree program in civil engineering is important for entry into the profession in any of the specialized areas discussed above. The civil engineering department offers many graduate level courses in the cited areas, such as structural engineering and environmental engineering. Graduate minors may include computer engineering, civil engineering management and others. Also recognized are minors in interdisciplinary areas of engineering.
Civil Engineering Program

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>El 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CS 102 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>Total credits spring semester</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>ESC 100 Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 110 Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>18.5</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.4 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ESC 120 Principles of Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 214 Physics III: Optics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 101 Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 120 Fundamentals of Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Total credits spring semester</td>
<td>18</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>CE 121 Structural Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>CE 141 Environmental Systems Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>ESC 130 Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 140 Fluid Mechanics and Flow Systems</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>CE 122 Structural Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>CE 131 Introduction to Geotechnical Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>CE 142 Water Resources Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>CE 341 Design of Steel Structures</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total credits spring semester</td>
<td>18</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>CE 342 Design of Reinforced Concrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CE 351 Urban Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>CE 363 Civil Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>15</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>CE 361 Civil Engineering Experimental Projects</td>
<td>2</td>
</tr>
<tr>
<td>CE 364 Civil Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>9</td>
</tr>
<tr>
<td>Total credits spring semester</td>
<td>14</td>
</tr>
</tbody>
</table>

Total credits required for degree: 135
Information and definitions of programs for students admitted in fall 2004 or later

Faculty
H. Ahmad, Baum (dean), Ben-Avi (associate dean), Chatterjee, Cumberbatch, Fontaine (chair), Kirtman, Sable

Mission Statement
To develop a highly trained, consummate engineer: able to lead, to practice in a professional manner, to grow with technological advances, to express himself or herself in written and in oral form, to function as a project engineer immediately upon graduation and to pursue graduate studies in a variety of professional fields.

Program Objectives
Each of our electrical engineering graduates:
• will be capable of functioning as a first-class project engineer,
• will have exceptional technical knowledge and professional design skills,
• will be capable of professional-level written and oral expression.
• will be capable of demonstrating leadership skills and
• will be open-minded and receptive to new ideas and viewpoints, with a commitment to excellence, independent thinking, research, life-long learning, innovation and the use of the latest technologies and modern professional practices throughout his or her career.

Program description
Basic courses in electrical circuits and signal processing (or computer systems or computer engineering), along with core mathematics, science and humanities courses, are taken in the freshman and sophomore years. Students may then elect to pursue study through an appropriate choice of electives in three areas:
• Electronic Systems and Materials
• Signal Processing and Communications
• Computer Engineering

Students plan their electives with the assistance of a faculty adviser to specialize in areas of interest and to obtain a well-rounded and diverse educational experience. By the senior year, strong students are encouraged to take graduate-level electives beyond the requirements of the bachelor’s degree as part of an integrated five-year master’s program.

The curriculum interweaves strong theory, grounded in mathematics and science, with extensive use of CAD tools and practical projects. Team and individual projects begin in the freshman year and culminate with year-long senior projects.

All laboratory courses, and many recitation courses, are project based. By the time students commence their senior projects, they perform open-ended system design, implementation and testing, cost analysis and prepare written and oral presentations. They act as project managers under the guidance of a faculty adviser.

There are numerous research and independent study opportunities involving close work with faculty and practicing professionals on cutting-edge problems.

Graduate Program
The candidate must choose a full-time Cooper Union faculty member from the electrical engineering department as one of his or her advisers. Possible areas of concentration or thesis topics are numerous and reflect the diverse interests of the faculty. Some examples are digital signal processing, biomedical engineering, telecommunications, computer networking, intelligent systems, electronic materials and other interdisciplinary areas of engineering. Students may approach the department with ideas for a new major or minor; the department, at its discretion, may elect to recognize this new area of concentration. Thesis topics that are research oriented or targeted towards commercial application are particularly encouraged.

Web Site
The Electrical Engineering program maintains a web site at www.ee.cooper.edu.
Electronic Systems and Materials Track in Electrical Engineering

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Eid 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CS 102 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
<tr>
<td>ESC000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ECE 150 Digital Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ECE 141 Circuits & Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>16.5</td>
</tr>
<tr>
<td>ESC000.4 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ECE 110 MATLAB Seminar: Signals and Systems</td>
<td>0</td>
</tr>
<tr>
<td>ECE 111 Signal Processing & Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 131 Solid State Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 151 Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ph 214 Physics III: Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 101 Communication Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 114 Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 121 Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 142 Circuits and Electronics II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 193 Electrical & Computer Engineering Projects I</td>
<td>1.5</td>
</tr>
<tr>
<td>Ma 326 Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>19.5</td>
</tr>
<tr>
<td>ECE 103 Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECE 135 Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>ECE 194 Electrical & Computer Engineering Projects II</td>
<td>4</td>
</tr>
<tr>
<td>ECE 341 Integrated Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 195 Electrical & Computer Engineering Projects III</td>
<td>4</td>
</tr>
<tr>
<td>Non-technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>7</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>13</td>
</tr>
<tr>
<td>ECE 196 Electrical & Computer Engineering Projects IV</td>
<td>3</td>
</tr>
<tr>
<td>Non-technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>8.5</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Total credits required for degree

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
</tr>
</tbody>
</table>
Signal Processing and Communications Track in Electrical Engineering

Freshman Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 102 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 150 Digital Logic Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Sophomore Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECE 141 Circuits & Electronics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>16.5</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ECE 110 MATLAB Seminar: Signals and Systems</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ECE 111 Signal Processing & Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 131 Solid State Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 151 Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ph 214 Physics III: Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECE 101 Communication Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 114 Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 121 Control Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 142 Circuits and Electronics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 193 Electrical & Computer Engineering Projects I</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Ma 326 Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>19.5</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECE 103 Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 135 Engineering Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 194 Electrical & Computer Engineering Projects II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECE 302 Probability Models & Stochastic Processes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECE 195 Electrical & Computer Engineering Projects III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Non-technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering or Science Electives</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>13</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECE 196 Electrical & Computer Engineering Projects IV</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Non-technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering or Science Electives</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Total credits required for degree 135
Computer Engineering Track in Electrical Engineering

<table>
<thead>
<tr>
<th>First Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CS 102 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ECE 150 Digital Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>18.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ECE 141 Circuits & Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 161 Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>19.5</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>ESC000.4 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ECE 110 MATLAB Seminar: Signals and Systems</td>
<td>0</td>
</tr>
<tr>
<td>ECE 111 Signal Processing & Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECE 131 Solid State Materials</td>
<td>3</td>
</tr>
<tr>
<td>ECE 151 Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 164 Data Structures and Algorithms I</td>
<td>2</td>
</tr>
<tr>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ph 214 Physics III: Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>ECE 101 Communication Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 114 Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>ECE 142 Circuits and Electronics II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 165 Data Structures and Algorithms II</td>
<td>2</td>
</tr>
<tr>
<td>ECE 193 Electrical & Computer Engineering Projects I</td>
<td>1.5</td>
</tr>
<tr>
<td>Ma 352 Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>18.5</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>ECE 103 Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ECE 194 Electrical & Computer Engineering Projects II</td>
<td>4</td>
</tr>
<tr>
<td>ECE 302 Probability Models & Stochastic Processes</td>
<td>3</td>
</tr>
<tr>
<td>ECE 361 Software Engineering & Large System Design</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>ECE 195 Electrical & Computer Engineering Projects III</td>
<td>4</td>
</tr>
<tr>
<td>Non-technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>13</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>ECE 196 Electrical & Computer Engineering Projects IV</td>
<td>3</td>
</tr>
<tr>
<td>Non-technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>6.5</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Total credits required for degree | 135
Mechanical Engineering
Department and Program

Information and definitions of programs for students admitted in fall 2004 or later

Faculty
Baglione, Delagrammatikas, Lima, Sidebotham, Wei (chair), Wootton

Mission Statement
Cooper Union’s Department of Mechanical Engineering will produce broadly-and rigorously-educated graduates, able to practice professionally, pursue advanced studies and innovate in a wide range of fields. Together with our faculty and staff, our students will develop a commitment toward lifelong interdisciplinary learning, fulfill their potential for responsible leadership and inspire others to continuously pursue excellence by example.

Program Objectives
• Our graduates will apply their broad and rigorous education to responsible, interdisciplinary problem solving,
• communicate clearly and effectively in their chosen professions
• continue to learn and educate themselves in their fields of pursuit.

Program description
Mechanical engineering is concerned with the devices and phenomena related to the generation, transmission, application and control of power. Mechanical engineering grew up with the Industrial Revolution and is today the broadest of the engineering disciplines, encompassing many activities and fields of interest. Mechanical engineers may be involved with research and development, design, manufacturing, sales, application and service, administration and management, as well as teaching and consulting. Fields of interest include solid mechanics, materials, fluid mechanics, acoustics, heat transfer and thermodynamics, combustion, control systems, manufacturing, CAD/CAM and robotics or combinations of these as is often the case in the design and development work of complex projects. (Examples: the space shuttle, the investigation of alternate energy from renewable resources, the development of completely automated factories through robotics and human joint replacements.) At the Albert Nerken School of Engineering, the mechanical engineering faculty and students have been, and continue to be, involved in these and other exciting new developments through their project work, research work or consulting.

Mechanical engineering is an ideal foundation for careers in the aerospace industry, ocean engineering, marine engineering, biomedical engineering, the automobile industry, the power and utility industries and virtually any area of activity that requires analytical abilities combined with a strong background in design practice.

The sequences of courses shown in the undergraduate curriculum table emphasize the fundamental engineering sciences as well as their applications in a computer environment and professional design practice. By the selection of electives and of their design and research projects, students have a large degree of flexibility in exploring their own interests.

Graduate Program
Major areas of concentration are in computer-aided design and engineering, robotics, acoustics, combustion, aerodynamics, mechanics of materials systems and other interdisciplinary areas of engineering.
Mechanical Engineering Program

Freshman Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.1</td>
<td>Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 110</td>
<td>Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110</td>
<td>General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EID 101</td>
<td>Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CS 102</td>
<td>Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>HSS 1</td>
<td>Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.2</td>
<td>Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 113</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ph 112</td>
<td>Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>EID 103</td>
<td>Principles of Design</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td>EID 110 Engineering Design Graphics</td>
<td></td>
</tr>
<tr>
<td>Ch 111</td>
<td>General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 160</td>
<td>Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>HSS 2</td>
<td>Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td></td>
<td>18.5</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.3</td>
<td>Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 223</td>
<td>Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ma 224</td>
<td>Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ph 213</td>
<td>Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Ph 291</td>
<td>Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>ESC 100</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 110</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>HSS 3</td>
<td>The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td></td>
<td>18.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.4</td>
<td>Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ESC 121</td>
<td>Basic Principles of Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Ma 240</td>
<td>Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 214</td>
<td>Physics III: Optics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 101</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ESC 161</td>
<td>Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 155</td>
<td>Design and Prototyping</td>
<td>2</td>
</tr>
<tr>
<td>HSS 4</td>
<td>The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC 130 Engineering Thermodynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ESC 140 Fluid Mechanics & Flow Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 100 Stress and Applied Elasticity</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 151 Feedback Control Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering or Science Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 101 Mechanical Vibrations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 130 Advanced Thermodynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 142 Heat Transfer</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 160 Engineering Experimentation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering or Science Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 120 Design Elements</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 141 Fundamentals of Aerodynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 163 Mechanical Engineering Projects</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 312 Manufacturing Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Semester:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 164 Capstone Senior Mechanical Engineering Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 320 Mechanical Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 300 Space Dynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Total credits required for degree 135
Interdisciplinary Engineering Program

Information and definitions of programs for students admitted in fall 2004 or later

Supervisory Committee
Ben-Avi (associate dean), Cumberbatch, Guido, Savizky, Wootten

Mission Statement
To provide a coherent and integrated program in engineering education, diverse, flexible and interdisciplinary in nature, and capable of serving the current and future trends in the engineering profession. It will also prepare graduates for advanced studies in a variety of other fields such as business, law, medicine, the sciences or mathematics.

Program Objectives
Our graduates will be:
• capable of using their broad technical knowledge base and systematic thinking to achieve their potential as creative, intellectual and successful contributors to society,
• acquainted with the concept of information sources and subsequent analysis and are adequately prepared to pursue advanced studies in a variety of fields,
• committed to lifelong learning and motivated towards continued professional development,
• self-confident team members capable of assuming leadership and functioning in a multi-disciplinary atmosphere and
• able to communicate efficiently in oral, written, graphical and visual forms.

Program description
The interdisciplinary engineering (IDE) program, developed with the help of National Science Foundation funding, is provided for students whose interests lie in those areas of engineering that cross traditional boundaries—for example: bioengineering, environmental engineering, infrastructure engineering, electro-mechanical engineering, robotics, etc. This program is intended for the student who is mature enough to take charge of his or her educational planning. It is designed to be very flexible and can be customized to a student’s own educational goals and interests. The program is administered by an elected faculty committee that meets with each student to discuss appropriate academic objectives. The committee carefully oversees the selection of courses to assure depth as well as breadth and conformity with accreditation requirements. The committee appoints academic adviser(s) for each student after their first year.

Following the first, mostly common year, students begin to use the elective course “slots,” which permit concentration in areas of student interest.

In June, immediately following the successful completion of the first year, a student in this program will write to the supervising faculty committee with a provisional educational plan that looks forward through to graduation. This plan will be reviewed annually. A statement of educational goals will accompany this plan. Precise instructions will be provided at the time.

Each student must evidence experimental knowledge and experience. Furthermore, every student enrolled in this program must have group and individual design experience, culminating in the senior project.
Interdisciplinary Engineering Program

Freshman Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>ESC000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 102 Introduction to Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester</td>
<td>ESC000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bio 101 Biology I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Sophomore Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>ESC000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ma 224.1 Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Core Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>16.5</td>
</tr>
<tr>
<td>Spring Semester</td>
<td>ESC000.4 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Ph 214 Physics III: Optics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core Engineering Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>18</td>
</tr>
</tbody>
</table>

Junior Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>Engineering or Science Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering Electives</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>EID 362 Design Project I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced Engineering Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester</td>
<td>EID 363 Design Project II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Math, Science or Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced Engineering Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credits Spring Semester</td>
<td>16</td>
</tr>
</tbody>
</table>

| Total credits required for degree | 135 |

The new IDE program is subject to changes in the curricular requirements as the faculty refine the structure and details as the program develops.
General Engineering
The School of Engineering offers a program in General Engineering leading to the degree of bachelor of science in engineering. This program is designed for students whose career plans and interests are to use their engineering studies as a background before undertaking further studies, on a graduate level, in fields such as medicine, dentistry, law, business, etc. The program is administered by the Dean’s Office.

Curriculum
The student must complete a minimum of 50 credits in engineering, (courses given within the majors) engineering sciences (ESC) and interdisciplinary engineering (EID), in addition to fulfilling all the requirements for the bachelor’s degree listed earlier in the catalog. The course requirements can be summarized as follows:

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses (freshman and sophomore)</td>
</tr>
<tr>
<td>Humanities and Social Sciences (over and above the core courses)</td>
</tr>
<tr>
<td>Engineering and Engineering Sciences (over and above the core courses)*</td>
</tr>
<tr>
<td>Free Electives</td>
</tr>
<tr>
<td>Total credits</td>
</tr>
</tbody>
</table>

Each student is assigned to a faculty adviser and, in consultation with the adviser, devises an academic program to suit his or her own needs. Students may choose from all courses available at The Cooper Union and may work in such interdisciplinary areas as environmental and energy resources engineering, systems and computer engineering, bioengineering and ocean and aerospace engineering. Students who are considering application to other professional schools after completing the engineering degree are advised to take one year of organic chemistry and one year of biology for medicine and dentistry, additional courses in the social sciences for law and one year of economics for business. Such students should consult their faculty adviser in order to design a minor concentration to meet professional goals and degree requirements.

* Engineering and Engineering Sciences courses are coded with prefixes CHE, CE, CS, EE/ECE, ME, ED and ESC.

Core Curriculum of the School of Engineering

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CS 102 Computer Programming for Engineers</td>
<td>2</td>
</tr>
<tr>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>17</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>Total credits spring semester</td>
<td>15.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester:</td>
<td></td>
</tr>
<tr>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Ph 291 Introductory Physics Lab</td>
<td>1.5</td>
</tr>
<tr>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>18.5</td>
</tr>
<tr>
<td>Spring Semester:</td>
<td></td>
</tr>
<tr>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 214 Physics III: Optics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>10</td>
</tr>
<tr>
<td>Total credits spring semester</td>
<td>19</td>
</tr>
</tbody>
</table>
Master's Programs
Degree Requirements

For Cooper Union integrated bachelor/master's program students

Credit Requirements
A minimum of 30 credits beyond the baccalaureate degree must be completed at Cooper Union (in addition to possible undergraduate deficiencies). Of these, not more than six credits may be undergraduate-level courses. The 30 credits offered for the degree must satisfy the following distribution:

<table>
<thead>
<tr>
<th>Credits</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The major</td>
<td>minimum 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A coherent concentration of graduate-level courses in the chosen field, which must include courses approved by the adviser(s). (A planned course of study must be submitted for approval by the dean’s office.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The minor</td>
<td>minimum 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A concentration in an area of engineering other than the chosen major.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis project</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits | 30 |

Grade Requirement
A minimum grade point average of 3.0 is needed in all courses to satisfy the master’s degree requirement.

Appropriate Excess Credits Taken as an Undergraduate
For Cooper Union baccalaureate holders, any credits of appropriate level, taken as undergraduates in excess of their bachelor’s degree requirement, may be applied to the master’s degree, subject to the above requirements and advisory approval.

Time Limitation
The requirements for the master of engineering program must be completed within two years of admission except for extraordinary circumstances that require the express consent of the dean or associate dean of engineering. Requests for such extension must be presented in writing to the Office of the Dean in the final semester of the second year. Thesis adviser(s)’s approval is also required. Master’s students who receive approval to extend their studies beyond two years will be assessed a maintenance of matriculation fee of $1,000 per semester.

Program of Study
A complete program of study, major as well as minor, is designed by the student with the assistance and approval of the academic adviser(s) and approved by the Office of the Dean of Engineering.

Minors
Minor concentrations are offered in accordance with faculty capabilities and school resources. Current recognized minors include: bioengineering; computer engineering, environmental engineering, energy resources engineering or urban security. Other courses in engineering and science may be chosen to form an innovative and coherent program of study for a minor with the approval of the department.

With the adviser(s)’s approval and resources available other minors may be constructed.

Thesis/Project
- Each student is required to submit a thesis or project in the major or the minor area of study, equivalent to a maximum of six credits (400 level), for partial fulfillment of the master of engineering requirements. This project must be discussed with and approved by an adviser prior to being started.
- The thesis or project must be successfully defended orally by the student and submitted in written form.

Fellowships
One source of funding available to students wishing to pursue graduate study in engineering is the Enders Fund, governed by the will of Henry C. Enders and administered by the New York Community Trust. This fellowship is available to engineering graduates of The Cooper Union who plan to do graduate work in either chemistry, chemical engineering, chemistry-based environmental engineering or chemistry-based bioengineering and who have satisfactorily completed all of the chemistry courses required of Cooper Union chemical engineering graduates. Recipients are selected by the joint faculties of chemistry and chemical engineering.
Chemistry
Faculty: Bové (chair), Newmark, Savizky
The Department of Chemistry offers a wide range of courses that are necessary for the understanding of the various engineering disciplines. First-year engineering students enroll in the following courses: General Chemistry (a general quantitative and descriptive overview of chemistry), Physical Principles of Chemistry (a quantitative discussion of chemical thermodynamics, electrochemistry and chemical kinetics) and General Chemistry Laboratory (chemical experimentation with emphasis on data recording, report writing and safety).

Sophomore and junior level courses required for chemical engineering majors can also be taken as electives by those wishing to further their knowledge in the environmental, biomedical, instrumental and physical areas.

In addition, elective courses, suitable for students interested in bioengineering or students intending to go to medical school, are available.

Research at the undergraduate and master’s levels can be conducted under the supervision of the chemistry faculty.

Interested students should meet with the chemistry chair to discuss possible research areas.

The department operates laboratories in general chemistry, organic chemistry and instrumental analysis and for research projects.

Mathematics
Faculty: Agrawal (chair), Baiyn, Casti, Hopkins, Kondopirakis, Smyth, Vulakh
The primary responsibility of the Department of Mathematics is the maintenance and delivery of the core mathematics curriculum for the School of Engineering. This consists of a sequence of required courses given in the first two years covering calculus, linear algebra, probability, vector calculus and differential equations. In addition to the core courses, there are a variety of elective mathematics courses, some of which are computer related. The mathematics curriculum will more than adequately prepare the student for professional work as well as graduate study in engineering and applied mathematics.

The faculty of mathematics strives to develop in the student a firm foundation in, and an appreciation of, the structure and methods of mathematics. Students interested in mathematics research should consult the chair for specific areas of expertise.

Physics
Faculty: A. Wolf (chair), Uglesich
The physics program at Cooper Union provides a sequence of introductory courses devised to introduce students in engineering to fundamental physical concepts that underlie all the engineering disciplines. Additionally, the Physics Department offers elective courses that are crafted to provide an enhanced understanding of specially selected fields of interest in engineering science.
Course Renumbering

In the process of curriculum development, courses have been renumbered. This chart shows the new and old numbers for convenience. You may find an old number listed in the prerequisites for a course.

<table>
<thead>
<tr>
<th>Old Course</th>
<th>New Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 102</td>
<td>EE102</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>ECE 101</td>
<td>EE101</td>
<td>Communication Theory</td>
</tr>
<tr>
<td>ECE 103</td>
<td>EE103</td>
<td>Communications Networks</td>
</tr>
<tr>
<td>ECE 110</td>
<td>EE300.1</td>
<td>MATLAB seminar</td>
</tr>
<tr>
<td>ECE 114</td>
<td>EE114</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>ECE 116</td>
<td>EE211</td>
<td>Music & Engineering</td>
</tr>
<tr>
<td>ECE 121</td>
<td>EE171</td>
<td>Control Systems</td>
</tr>
<tr>
<td>ECE 131</td>
<td>ESC310</td>
<td>Solid State Materials</td>
</tr>
<tr>
<td>ECE 132</td>
<td>EE132</td>
<td>Electro-mechanical Energy Conversion</td>
</tr>
<tr>
<td>ECE 150</td>
<td>EE150</td>
<td>Digital Logic Design</td>
</tr>
<tr>
<td>ECE 151</td>
<td>EE151</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>ECE 161</td>
<td>EE151</td>
<td>Programming Languages</td>
</tr>
<tr>
<td>ECE 163</td>
<td>EE153</td>
<td>Data Structures</td>
</tr>
<tr>
<td>ECE 193</td>
<td>EE160</td>
<td>EE projects I</td>
</tr>
<tr>
<td>ECE 194</td>
<td>EE161</td>
<td>EE projects II</td>
</tr>
<tr>
<td>ECE 195</td>
<td>EE162</td>
<td>EE projects III</td>
</tr>
<tr>
<td>ECE 196</td>
<td>EE163</td>
<td>EE projects IV</td>
</tr>
<tr>
<td>ECE 301</td>
<td>EE301</td>
<td>Communications Systems</td>
</tr>
<tr>
<td>ECE 309</td>
<td>EE360</td>
<td>Intro to Cryptography</td>
</tr>
<tr>
<td>ECE 321</td>
<td>EE372</td>
<td>Control System Design</td>
</tr>
<tr>
<td>ECE 323</td>
<td>EE381</td>
<td>Embedded System Design</td>
</tr>
<tr>
<td>ECE 341</td>
<td>EE143</td>
<td>Integrated Circuit Engineering</td>
</tr>
<tr>
<td>ECE 343</td>
<td>EE391</td>
<td>Bio-instrumentation and Sensing</td>
</tr>
<tr>
<td>ECE 344</td>
<td>EE123</td>
<td>Bio-systems and Instrumentation</td>
</tr>
<tr>
<td>ECE 361</td>
<td>EE352</td>
<td>Software Engineering and Large Systems Design</td>
</tr>
<tr>
<td>ECE 399</td>
<td>EE399</td>
<td>Selected topics in Electrical Engineering</td>
</tr>
<tr>
<td>ECE 401</td>
<td>EE401</td>
<td>Selected Topics in Communication Theory</td>
</tr>
<tr>
<td>ECE 402</td>
<td>EE402</td>
<td>Selected Topics in Probability and Stochastic Processes</td>
</tr>
<tr>
<td>ECE 403</td>
<td>EE407</td>
<td>High-speed Networks</td>
</tr>
<tr>
<td>ECE 404</td>
<td>EE404</td>
<td>Communication Coding</td>
</tr>
<tr>
<td>ECE 405</td>
<td>EE405</td>
<td>Advanced Digital Communications</td>
</tr>
<tr>
<td>ECE 408</td>
<td>EE408</td>
<td>Wireless Communications</td>
</tr>
<tr>
<td>ECE 409</td>
<td>EE460</td>
<td>Advanced Cryptography</td>
</tr>
<tr>
<td>ECE 413</td>
<td>EE413</td>
<td>Robust Signal Processing</td>
</tr>
<tr>
<td>ECE 415</td>
<td>EE415</td>
<td>Wavelets & Multi-resolution Imaging</td>
</tr>
<tr>
<td>ECE 416</td>
<td>EE416</td>
<td>Adaptive Filters</td>
</tr>
<tr>
<td>ECE 417</td>
<td>EE417</td>
<td>DSP System Design</td>
</tr>
<tr>
<td>ECE 418</td>
<td>EE418</td>
<td>Digital Video</td>
</tr>
<tr>
<td>ECE 421</td>
<td>EE471</td>
<td>Advanced Control System Design</td>
</tr>
<tr>
<td>ECE 422</td>
<td>EE482</td>
<td>Selected Topics in Embedded Systems</td>
</tr>
<tr>
<td>ECE 423</td>
<td>EE464</td>
<td>Digital & Microprocessor Control</td>
</tr>
<tr>
<td>ECE 431</td>
<td>EE421</td>
<td>Microwave Engineering</td>
</tr>
<tr>
<td>ECE 433</td>
<td>EE406</td>
<td>Optical Communication Devices & Systems</td>
</tr>
<tr>
<td>ECE 441</td>
<td>EE414</td>
<td>Digital Integrated Circuit Engineerin</td>
</tr>
<tr>
<td>ECE 443</td>
<td>EE440</td>
<td>Thin Film Electronics</td>
</tr>
<tr>
<td>ECE 453</td>
<td>EE453</td>
<td>Advanced Computer Architecture</td>
</tr>
<tr>
<td>ECE 457</td>
<td>EE457</td>
<td>Computer Operating Systems</td>
</tr>
<tr>
<td>ECE 461</td>
<td>EE451</td>
<td>Advanced Programming Methods</td>
</tr>
<tr>
<td>ECE 462</td>
<td>EE452</td>
<td>Interactive Engineering Graphics</td>
</tr>
<tr>
<td>ECE 464</td>
<td>EE454</td>
<td>Databases</td>
</tr>
<tr>
<td>ECE 466</td>
<td>EE456</td>
<td>Compiling Techniques</td>
</tr>
<tr>
<td>ECE 468</td>
<td>EE458</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>ECE 469</td>
<td>EE459</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ECE 491</td>
<td>EE491</td>
<td>Selected Topics in Electrical & Computer Engineering</td>
</tr>
<tr>
<td>ECE 499</td>
<td>EE499</td>
<td>Master’s Thesis</td>
</tr>
</tbody>
</table>
Chemical Engineering Courses

Undergraduate

ChE 121 Chemical Reaction Engineering After consideration of chemical reaction kinetics and thermodynamics, the course focuses on the design relationships for batch, semi-batch, plug-flow and mixed reactors. The application of these design relationships is explored in ideal, isothermal, non-isothermal, adiabatic reactors. Homogeneous, heterogeneous and biological systems are discussed including the effect of transport phenomena on reaction rates and reactor design. 3 credits. Prerequisite: ChE 141; co-requisite: ChE 142

ChE 131 Advanced Chemical Engineering Thermodynamics Concept of fugacity in imperfect gases; chemical potential and partial molar properties in mixtures; Gibbs-Duhem Equation; ideal solutions of imperfect gas mixtures; the Lewis and Randall Rule; methods of calculating activity coefficients in non-ideal mixtures; vapor-liquid equilibria; checking thermodynamic consistency of vapor-liquid equilibrium data; equilibrium constant, enthalpy change and Gibbs free energy of formation in chemical reactions. 3 credits. Prerequisite: ChE 130.1

ChE 141 Heat Transmission Thermal conductivity; steady state conduction in solids and heterogeneous materials; transient conduction; convective heat transfer; heat transfer during boiling and during condensation; design of heat-exchange equipment; radiation heat transfer. 3 credits. Prerequisite: ESC 140

ChE 142 Mass Transfer Operations Diffusion mechanisms and phenomena; estimation of diffusivity, Fick’s law of diffusion; concentration distributions in solid and fluid flow with or without chemical reaction. Application of thermodynamic and transport concepts to the design of continuous-contact and staged mass transfer processes. Distillation, gas absorption and drying. Examination of the limitations of theory and empiricism in design practice. 4 credits. Prerequisites: ChE 131, ChE 141 and ESC 140

ChE 151 Process Simulation and Mathematical Techniques for Chemical Engineers In this course computer-aided design is applied to chemical engineering problems in fluid flow, heat transfer, mass transfer and chemical reactor analysis. Topics include: matrices and determinants properties and special matrices, systems of linear equations and methods of solution by matrices, eigenvalues, eigenvectors and applications to least squares and stage processes. Steady and unsteady general diffusion equation, one- and two-dimensional heat transfer equation, Fourier series, Laplace and Z transforms and applications. Series and numerical solutions, Power, Bessel, Euler, Runge-Kutta, Milne, Finite differences approximations and Crank-Nicholson. Applications. 3 credits

ChE 152 Chemical Process Dynamics and Control Introduction to logic of process dynamics and principles of control in chemical engineering applications; block diagram notation, input disturbance, frequency response and stability criteria for chemical equipment and chemical reaction systems; single- and multiple-loop systems; phase plane analysis of reaction systems; application of analog computer in solution of problems. 3 credits. Prerequisite: ChE 151

ChE 161.1 Process Evaluation and Design I The course uses design projects to explore process flow diagrams and initial equipment design estimates based on process and unit operation material and heat balances. Studies include equipment cost estimation methods that are developed into process economic evaluations and profitability analysis. The course concludes with process and equipment design using Simulation Science’s PRO- vision/PRO-II and an examination of optimization techniques. 3 credits each. Prerequisites: ChE 141 and ChE 121

ChE 161.2 Process Evaluation and Design II This is a continuation of ChE 161.1, and is the "capstone design course" in chemical engineering. All aspects of chemical engineering are integrated in the design of a chemical process plant. The design process consists of flow-sheet development, equipment selection and sizing, utility requirements, instrumentation and control, economic analysis and formulation of safety procedures. The plant design is carried out in class and includes the use of professional simulation packages. The AICHE project is included in this course. 3 credits. Prerequisite: ChE 161.1

ChE 162.1-162.2 Chemical Engineering Laboratory I & II This laboratory course emphasizes the application of fundamentals and engineering to processing and unit operations. The experiments range from traditional engineering applications to new technologies and are designed to provide hands-on experiences that complement the theories and principles discussed in the classroom. Preparation of detailed project reports and oral presentations are important components of this course. 1.5 credits each. Prerequisite: ChE 121, ChE 141; co-requisite: ChE 142

ChE 311 Introduction to Polymer Technology Introduction to the chemistry and physical status of polymer materials. Discussion on formation of polymers from corresponding monomers, emphasizing mechanisms and kinetics of various polymerization techniques. Measurements of average molecular weights and molecular weight distribution of polymers. Viscosity and rheology of polymer solutions and melts. 3 credits

ChE 321 Chemical Reactor Design Design and analysis of chemical reactor systems; transport phenomena; reactor dynamics; design optimization; experimental techniques. 3 credits. Prerequisite: ChE 121

ChE 340 Industrial Waste Treatment This course deals with the treatment of industrial waste streams. Topics include: sources of wastewater, characterization of industrial wastewater, BOD, COD, TOC, The OD, treatment methods by physical, chemical, biological and thermal processes. 3 credits. Prerequisite: ChE 121

ChE 393 Research Problem I Continuation of ChE 391. 3 credits. Prerequisite: ChE 391

ChE 394 Research Problem IV Continuation of ChE 393. 3 credits. Prerequisite: ChE 393

ChE 399 Research Problem Advanced study of the theory and design of multi-component distillation, gas absorption and extraction operations. Thermal diffusion, foam fractionation, parametric pumping, reverse osmosis and chromatographic separations are examples of less conventional operations discussed. Thermodynamics of phase-equilibrium; diffusion and low- and high-flux mass transport theory. 3 credits. Prerequisite: ChE 151

ChE 391 Research Problem I An elective course available to qualified and interested students recommended by the faculty. Students may select problems of particular interest in some aspect of theoretical or applied chemical engineering. Topics range from highly theoretical to completely practical, and each student is encouraged to do creative work on his or her own with faculty guidance. 3 credits. Prerequisite: senior standing.

ChE 392 Research Problem II Continuation of ChE 391. 3 credits. Prerequisite: ChE 391

ChE 393 Research Problem I Continuation of ChE 392. 3 credits. Prerequisite: ChE 392

ChE 394 Research Problem IV Continuation of ChE 393. 3 credits. Prerequisite: ChE 393

Graduate

ChE 411 Polymer Technology and Engineering Structures and synthesis of Carbon-Carbon and heterogeneous chain polymers, mechanisms and kinetics of emulsion, condensation, ionic stereo-specific polymerizations. Rubber elasticity. Rheological and viscoelastic properties of polymers and polymer solutions. Survey and investigations of advanced topics are required. 3 credits. Prerequisite: permission of instructor

ChE 421 Advanced Chemical Reaction Engineering Principles and practices of chemical reaction systems emphasizing heterogeneous chemical kinetics, coupled heat and mass transfer in reacting systems and reactor dynamics. Modeling and simulation of systems are extensively applied. 3 credits. Prerequisite: ChE 121
ChE 430 Thermodynamics of Special Systems (same as EID and ME 430) 3 credits. Prerequisite: ChE 131

ChE 431 Advanced Chemical Engineering Thermodynamics and Molecular Theory Modern methods of applying thermodynamics and molecular physics to phase behavior of fluid mixtures, intermolecular forces and thermodynamic properties, molecular dynamic properties, molecular theory of gases and liquids, theories of liquid solutions and fluid mixtures at high pressures. 3 credits. Prerequisite: ChE 131

ChE 434 Special Topics in Combustion (same as ME 434) 3 credits. Prerequisite: ME 334 or permission of instructor

ChE 435 Transport Processes in Internal Combustion Engines (same as ME 435) 3 credits. Prerequisite: permission of instructor

ChE 440 Advanced Fluid Mechanics (same as EID and ME 440) 3 credits. Prerequisites: ESC 140 and permission of instructor

ChE 441 Advanced Heat and Mass Transfer (same as EID 441) 3 credits. Prerequisite: ESC 141

ChE 442 Multi-Component Distillation Various methods for vapor-liquid equilibrium calculations, including the Wilson parameter approach, are reviewed. Distillation tower design based on steady-state approach includes analytical method using matrix operation and various convergence methods are discussed in detail. Introduction to unsteady-state approach for tower design and dynamics evaluation. Students are encouraged to apply existing techniques to complex towers and to improve the state of the art. 3 credits. Prerequisite: ChE 142

ChE 444 Boundary Layer Theory Study of heat, mass and momentum transfer in the boundary layer region of a submerged body; emphasis on continuum fluid systems, with introduction to rarified and non-continuum gaseous systems; analytical, numerical and analog methods of solutions. 3 credits. Prerequisite: ESC 141

ChE 451 Digital Simulation Principles of digital simulation for chemical processes and other engineering problems are introduced. Groups of subroutines as essential tools for dynamic simulation and evaluation are developed. Projects involving advanced dynamic simulations of chemical engineering systems are required. 3 credits. Prerequisite: permission of instructor

ChE 452 Chemical Process Optimization Various algorithms of optimization techniques are introduced. Methods covered include both analytical and numerical approaches. Applications to optimal reactor design. Optimal control of chemical process equipment performance is demonstrated. Solution by students of assigned optimization problems in chemical engineering on digital or analog computers is required. 3 credits. Prerequisite: ChE 451

ChE 453 Digital Computer Process Control An introductory course in digital computer control. Topics discussed include basic mathematics of sampling data systems; control algorithms using transformation, direct digital control, supervisory control, application of the digital computer to advanced control and optimal control. Analog to digital and digital to analog conversions, acquisition of laboratory data and remote control of experimental equipment are also covered. 3 credits. Prerequisite: ChE 152

ChE 454 Advanced Experimental Process Control Advanced experimental process control concepts and advanced digital computer control. Three-mode feed forward control of process variables including temperature, pressure, level and pH value. Feed forward, proportional and cascade controls of various process variables. Logic programmable control. Series communication control. Computer controls step change, single-in, single-out and transfer function evaluation. Computer data acquisition. 3 credits. Prerequisite: ChE 152

ChE 460 Chemical Engineering Equipment Design The chemical engineer must develop, design and engineer both the complete process and the equipment used; choose the proper raw materials; operate the plant efficiently, safely and economically; and see to it that products meet the requirements set by the customer. Chemical engineering is both an art and a science. Whenever science helps the engineer to solve a problem, science should be used. When, as usually the case, science does not give a complete answer, it is necessary to use experience and judgement. The professional stature of an engineer depends on skill in utilizing all sources of information to reach practical solutions to processing problems. This course will concentrate specifically on the theoretical and practical principles of detailed equipment design for mass transfer, heat transfer and reaction operations. Attempts will be made to emphasize modern technologies used in these operations. Equipment covered will vary from year to year. 3 credits

ChE 490 Process Synthesis This course provides a new basis for the design of integrated chemical processes. The ability to predict, at the outset, achievable design targets that have a sound scientific basis is fundamental to the approach. These targets relate to energy, capital and raw materials, costs and flexibility. Topics will include review of basic thermodynamic concepts, capital/energy trade-off, process integration–multiple utilities, process/utility interface, reactors and separators in the context of overall process–power optimization, design for flexibility, total site layout, batch processes and process plant retrofit. 3 credits. Prerequisites: ChE 161.1 and ChE 161.2 or permission of instructor

ChE 499 Thesis/Project Master’s candidates are required to conduct, under the guidance of a faculty adviser, original investigations of a problem in chemical engineering, individually or in a group, and to submit a written thesis describing the results of the work. 6 credits for full year

Civil Engineering Courses

Undergraduate

CE 120 Civil Engineering Fundamentals Planning, execution and interpretation of drawings and specifications for civil engineering projects. Sample drawings and specifications. Contractual requirements. Sample contracts. Permitting, scheduling and cost estimation. Basic operations of design and construction firms. Interface with other disciplines on civil engineering projects. 3 credits. Prerequisite: EID 101

CE 121 Structural Engineering I Discussion of materials, load forms and structures. Analysis of determinate structures. Displacement of structures and their importance in applications. Experimental aspects of materials behavior in structural applications. Emphasis is placed on basic experimental techniques, design of experiments, selection and use of appropriate instrumentation and interpretation of results. 4.5 credits (3 hours of lecture, 3 hours of laboratory). Prerequisite: ESC 101

CE 122 Structural Engineering II Modern methods of structural analysis of indeterminate structures. Discussion of energy methods, force methods and displacement methods. Formulation of elementary matrix stiffness and flexibility methods. Computer applications in structural analysis. 3 credits. Prerequisite: CE 121

CE 131 Introduction to Geotechnical Engineering Introduction to various indexing tests of soils, clay mineralogy, permeability, seepage and flow nets, stress distribution in soil masses, one-dimensional consolidation theory, strength characteristics of soils, application of Mohr’s Circle to soil mechanics, stability of slopes. 4.5 credits (3 hours of lecture, 3 hours of laboratory). Prerequisite: ESC 101; or prerequisite or co-requisite: ESC 140

CE 141 Environmental Systems Engineering Qualitative and quantitative treatment of water and wastewater systems as related to domestic and industrial needs and their effect on the environment. Introduction to air pollution sources and control and solid/hazardous waste engineering. Design of water and wastewater treatment plants. Field and laboratory techniques for measurement of water quality parameters. Laboratory analysis of representative waters and
wastewaters for commonly determined parameters as related to applications in water environment.
4.5 credits (3 hours of lecture, 3 hours of laboratory). Prerequisite: ESC 140

CE 142 Water Resources Engineering (same as EID 142). Problems in conservation and utilization of water. Hydrologic techniques. Surface water and ground water supplies. Water transmission and distribution. Flood control, navigation and irrigation. Introduction to open channel flow and pipe networks. Design of hydraulic structures. Experimental aspects of hydraulic phenomenon. Emphasis is placed on basic experimental techniques, design of experiments, selection and use of appropriate instrumentation and interpretation of results. 4.5 credits (3 hours of lecture, 3 hours of laboratory). Prerequisite: ESC 140

CE 331 Foundation Engineering Layout of subsurface investigation program, SPT (Standard Penetration Test), Dutch-cone penetrometer. Analysis and design of spread footings on cohesive and cohesionless soil by stability and settlement procedures, combined footings, strap footings, floating foundations and pile foundations. Settlement analysis due to deep-seated consolidation. 3 credits. Prerequisite: CE 131

CE 332 Lateral Earth Pressures and Retaining Structures Introduction to classical lateral earth pressure theories (Rankine and Coulomb). Analysis and design of cantilever and gravity retaining walls, cantilevered and anchored sheetpile bulkheads, anchorages systems (individual and continuous deadmen, grouted tiebacks) and braced cofferdams. Gravity Wall Systems (Gabion Walls, Cribock Walls and Double Wall). 3 credits. Prerequisite: CE 131

CE 341 Design of Steel Structures Study of behavior and design of structural steel components and their connections. Understanding and development of design requirements for safety and serviceability, as related to latest structural steel specifications by the American Institute of Steel Construction (A.I.S.C.). Current design emphasizing LRFD, fabrication and construction practices. Composite design. 3 credits. Prerequisite: CE 121; co-requisite: CE 122

CE 342 Design of Reinforced Concrete Structures Study of the behavior and design of structural concrete components and their connections. Understanding and development of design requirements for safety and serviceability, as related to latest specifications by the American Concrete Institute (A.C.I.). Current design, fabrication and construction practices. Introduction to prestressed concrete. 3 credits. Prerequisite: CE 122

CE 346 Hydraulic Engineering An integration and application of the principles of fluid mechanics to problems concerned with water supply and distribution. Open channel flow and design of hydraulic structures. 3 credits. Prerequisite: CE 142

CE 351 Urban Transportation Planning Historical background and evolution of current procedures used in the “urban transportation planning process.” Covered are the historical framework, urban development theories, land use, trip generation, trip distribution models, traffic assignment techniques, modal split and introduction to urban transportation systems. 3 credits

CE 352 Elements of Transportation Design Review of urban transportation planning process. Specific design elements of various highway and public transportation systems. Included are locational design, traffic service, environmental impact analyses, alternatives evaluation, geometric design elements, operations and capacity and level-of-service analysis. Also, selected topics in urban transportation systems. 3 credits

CE 353 Urban Transportation and Planning An introduction to the subject of urban planning and transportation systems. Emphasis is placed on the urban transportation planning process, including land use, trip generation, trip distribution, traffic assignment, and modal split. 3 credits

CE 356 Civil Engineering Project Individual design, research or experimental projects. Open only to well-qualified students. 3 credits. Prerequisite: permission of instructor

CE 357 Fundamentals of Construction Management (same as EID 380) 3 credits

CE 361 Civil Engineering Experimental Projects Exploratory experimental projects in materials, hydraulics, soils, environmental or other civil engineering specialties. Projects are conceived, designed and executed by groups of students under faculty supervision. 2 credits. Prerequisite: Permission of instructor. (Students are required to have taken introductory civil engineering subject[s] related to project.)

CE 363 Civil Engineering Design I Individual or group design projects based upon the interests of the students and with the approval of the instructor. Final engineering reports and formal oral presentations are required for all projects. Lectures by faculty and professional practitioners cover the following topics: engineering, environmental and economic feasibility assessment issues; preparation of plans and specifications; cost estimates; progress chart and critical path; interfacing with community; etc. Field visits to major New York City projects under construction. 3 credits. Prerequisite: permission of instructor. (Students are required to have taken introductory CE subject[s] related to project.)

CE 364 Civil Engineering Design II Continuation of CE 363. 3 credits. Prerequisite: CE 363

CE 369 Civil Engineering Project Individual design, research or experimental projects. Open only to well-qualified students. 3 credits. Prerequisite: permission of instructor

CE 380 Fundamentals of Construction Management (same as EID 380) 3 credits

CE/EN 390 Introduction to Sustainable Design Sustainable design minimizes the impact on the environment by site planning and design, energy and water conservation and interior environmental quality. This course will focus on the design of a prototype structure using sun, light, air, renewable materials, geological systems, hydrological systems and green roofing. Each student will develop a project outlined by the U.S. Green Building Council rating system known as LEED. The six areas that will be developed to design the project are: sustainable sites, water efficiency, energy and atmosphere, material and resources, indoor environmental quality and innovative design process. Class time is separated into a series of lectures, private consultations and student presentations. 3 credits. Prerequisite: permission of instructor and ESC 140; CE 122 or ME 100

Graduate

CE 411 Introduction to Civil Engineering Management Overview of the civil engineering profession and the importance of infrastructure to society. The course will emphasize the planning, design, construction and maintenance of public works. New York City will serve as the laboratory for field visits and course projects. 3 credits. Prerequisite: permission of instructor

CE 412 Stochastic Concepts in Civil Engineering Introduction to probabilistic methods and stochastic concepts in civil engineering. Elements of applied probability and statistics. Engineering applications involving economic and risk analysis under uncertainty. Realistic and common civil engineering examples and problems in transportation, structures, materials, soils and water resources. 3 credits. Prerequisites: Ma 224 and Ma 240

CE 414 Solid Waste Management Engineering aspects of solid waste collection, transport and disposal, including sanitary landfill design, incineration, composting, recovery and re-utilization of resources. Optimization techniques of facility siting and collection route selection and economic evaluation of factors affecting selection of disposal methods. 3 credits. Prerequisite: permission of instructor

CE 421 Matrix Methods of Structural Analysis In-depth treatment of matrix methods. Application to linear as well as nonlinear analysis of plane and space structures. Discussion of current techniques. Computer applications. 3 credits. Prerequisites: CE 122, Ma 240

CE 424 Plates and Shells
Discretized grid-work and grillage analysis by matrix techniques. Development of the classical thin plate theory. Mathematical and numerical solutions of the plate equation. Introduction to thin shell theory. Practical applications such as cylindrical shell roofs, spherical shell with an edge ring and various cases of shells of revolution. 3 credits. Prerequisite: CE 122

CE 425/EID 425 Structural Dynamics Dynamic behavior and design of structures subjected to time-dependent loads. Included in the load systems are earthquakes, blasts, wind and vehicles. Shock spectra and pressure impulse curves. Special applications in blast mitigation design. 3 credits. Prerequisite: CE 122

CE 426 Advanced Structural Design Discussion of principal design codes (AISC, ACI and AASHTO) as they relate to ASCE Standards, the International Building Code (IAC) and NYC Building codes Advanced materials behavior. Strength and serviceability requirements. Design of composite girders and slabs. Limit state response and formation of plastic hinges in steel and concrete structures. Structural upgrade and retro-fit of existing structures. 3 credits. Prerequisite or co-requisite: CE 341

CE 427 Behavior and Design of Prestressed Concrete Structures Behavior and design of prestressed members in flexure, shear, bond and torsion; continuous beams; columns; prestressed systems; loss of prestress. Emphasis is placed on ultimate strength design and the background of latest ACI code. 3 credits. Prerequisite: CE 341

CE 428 Plastic Analysis and Design Limit analysis of beams and frames. Upper and lower bound theorems. Collapse loads and displacements. Applications to steel and concrete structures. Special applications in blast mitigation design. 3 credits. Prerequisite: CE 341

CE 431 Advanced Foundation Engineering Analysis and design of foundations subjected to vibratory loading, beams on elastic foundation (vertical subgrade modulus), laterally loaded piles (with software applications), Wave Equation Analysis of Piles (with software application of WEAP). 3 credits. Prerequisites: CE 131 and permission of instructor

CE 432 Special Topics in Lateral Earth Pressure and Retaining Structures Analysis and design of cellular cofferdams, reinforced earth-retaining structures, slurry walls and retaining structures subjected to earthquake loading, soil nailing. 3 credits. Prerequisites: CE 131 and permission of instructor

CE 433 Advanced Topics in Geotechnical Engineering I Analysis of slopes using translatory slides and available software packages (POSTABL). Ground improvement technologies including dynamic compaction, ground freezing and reinforced earth technologies. 3 credits. Prerequisite: permission of instructor

CE 434 Advanced Topics in Geotechnical Engineering II Stresses in homogeneous and layered systems due to surface and buried loads. Development of flow network concepts and the Terzaghi one-dimensional consolidation theory, secondary consolidation, site pre-loading, sand drains and prefabricated vertical drains. 3 credits. Prerequisite: permission of instructor

CE 435 GeoEnvironmental Engineering (same as EID 439), 3 credits. Prerequisites: ESC 140, CE 141, CE 131 and permission of instructor

CE 440 Industrial Waste Treatment Design Integrated lecture and design periods that cover the sources of industrial wastewaters, their quantities and characteristics, and their treatability by physical, chemical and biological processes. Status of regulations involving categorical standards, local and state industrial pretreatment programs, NPDES permits, etc. Problems and solutions involved in combining municipal and industrial waste treatment. Case studies. 3 credits. Prerequisite: permission of instructor

CE 441 Water and Wastewater Technology Wastewater sources and estimates of domestic, commercial and industrial flows. Integrated lecture and design periods that cover unit processes for water and wastewater treatment. Design projects include hydraulic and process design of oxidation ponds, screening, girt removal, sedimentation tanks, secondary biological treatment, other physico-chemical processes and outfall design. 3 credits. Prerequisite: permission of instructor

CE 442 Open Channel Hydraulics Derivation of the general one-dimensional equations of continuity, momentum and energy used in open channel flow analysis. Steady uniform flow and boundary resistance. Steady nonuniform flows, channel transitions and controls, hydraulic jumps, surges, surface curves for gradually varied flow including the effects of lateral inflow. Unsteady flow in open channels. Dynamic waves, method of characteristics, surge formation. Kinematic waves, flood routing and overland flow. Design of channels and other hydraulic structures. 3 credits. Prerequisite: CE 142

CE 443 Groundwater Hydrology Physical process of flow in homogeneous and heterogeneous media. Development of governing equations and boundary conditions, analysis by analytical and numerical techniques. Groundwater resources; design of wells and prediction of yield. Analyses of transport of contaminants using deterministic and stochastic methods. 3 credits. Prerequisite: CE 142

CE 444 Hydrology Hydrology of the water cycle related to air mass movement, precipitation, evaporation, stream flow, floods, infiltration and groundwater including statistical hydrology, Design of irrigation systems. 3 credits. Prerequisite: CE 142

CE 445 Coastal Engineering Introduction of the hydrodynamics of waves in deep and shallow water. Emphasis on physical interpretation of the results and their engineering application. Wave refraction, diffraction, storm surges and statistical aspects of water waves. 3 credits. Prerequisite: CE 142

CE 446 Pollution Prevention or Minimization Introduction to the new concept and regulations in the U.S. and Canada of Pollution Prevention or Waste Minimization for managing hazardous pollution and protecting the environment and public health. Methodology of conducting environmental audits and lessons learned from successful pollution prevention programs. Case studies of various programs in industry, etc. 3 credits. Prerequisite: permission of instructor

CE 447 Stream and Estuary Pollution Application of basic concepts of fluid kinetics and dynamics to the analysis of dispersal and decay of contaminants introduced into lakes, streams, estuaries and oceans. Analysis and modeling of leachate and other contaminants into groundwater. 3 credits. Prerequisite: CE 142

CE 448 Environment and Sanitary Engineering (same as EID 448). Topics include types of environmental pollution and their effects; water quality standards and introduction to laboratory analyses of water quality parameters; sources and estimates of water and wastewater flows; physicochemical unit treatment processes. Integrated lecture and design periods cover water supply network, wastewater collection system and water treatment design projects. 3 credits. Prerequisite: permission of instructor

CE 449 Hazardous Waste Management Definition and characteristics of hazardous wastes. Generation, transport, treatment, storage and disposal of hazardous wastes. Leachate characteristics and management. Treatment technologies. Monitoring and safety considerations. Obligations under Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Field trips. 3 credits. Prerequisite: permission of instructor

3 credits. Prerequisites: CE 122 or ME 101 and permission of instructor.

CE 499 Thesis/Project Master’s candidates are required to conduct, under the guidance of a faculty adviser, an original investigation of a problem in civil engineering, individually or in a group, and to submit a written thesis describing the results of the work. 6 credits for full year.

Electrical and Computer Engineering (ECE) Undergraduate

Electrical and Computer Engineering (ECE) Undergraduate

Starting from elementary discrete-time

CE 101 Communication Theory (formerly EE 101) Information theory: entropy, information, channel capacity, rate-distortion functions, theoretical limits to data transmission and compression. Error control coding: block, cyclic and convolutional codes, Viterbi algorithm. Baseband and bandpass signals, signal constellations, noise and channel models. Analog and digital modulation formats (amplitude, phase and frequency), MAP and ML receivers, ISI and equalization. Coherent and non-coherent detection, carrier recovery and synchronization. Performance: computation of SNR, BER, power and bandwidth requirements. TDMA, FDMA, CDMA.

3 credits. Prerequisites: Ma 224 and ECE 111.

3 credits. Prerequisites: Ma 224 and ECE 111.

CE 110 MATLAB Seminar: Signals & Systems A weekly hands-on, interactive seminar that introduces students to MATLAB, in general, and the Signal Processing Toolbox in particular. Students explore scientific computation and scientific visualization with MATLAB. Concepts of signal processing and system analysis that are presented in ECE 111 or other introductory courses on the subject are reinforced through a variety of demonstrations and exercises. It is strongly encouraged for students taking a first course in signals and systems, or for students expecting to use MATLAB in projects or courses.

0 credits. 1 hour per week.

CE 111 Signal Processing & Systems Analysis A presentation of signals and systems that does not rely on prior knowledge of electrical circuits or differential equations. Sine waves, phasors, continuous-time and discrete-time signals, sampling.
ECE 131 Solid-State Materials
Applied solid-state physics with emphasis on semiconductor materials. Crystals, quantum mechanics, Schrodinger equation, energy bands, Fermi-Dirac statistics, Fermi levels, Semiconductor physics: electrons and holes, doping, diffusion and drift, generation-recombination, mobility. Physics of PN junction and BJT; depletion, carrier injection, minority carrier profiles, Ebers-Moll equations, junction capacitance, hybrid-pi model. Breakdown, metal-semiconductor contacts, heterojunctions, fabrication techniques, temperature effects and additional topics as time allows. Diode circuits; DC analysis of BJTs in active, saturated and cutoff modes; single transistor amplifiers and small-signal models. 3 credits. Prerequisite: ECE 141

ECE 132 Electro-Mechanical Energy Conversion (formerly EE 132)
Analysis of energy sources and energy converters. Principles of electromechanical energy conversion; singly and multiply excited systems; rotating and linear machines; three-phase circuits; magnetic circuits and transformers; torque and induced voltage from field considerations; synchronous machines; induction motors; DC machines. Introduction to power electronics. Applications including high-speed transportation, energy storage and interconnection of distant generating stations. 3 credits. Prerequisites: ESC120 or ECE 141 and Ph 213

ECE 135 Engineering Electromagnetics
This course emphasizes time-varying fields, with topics presented from electrostatics and magnetostatics as necessary. Maxwell's equations, constitutive relations, phasor vector fields, wave and Helmholtz equations, potentials, boundary conditions. Plane waves in lossless and lossy materials, polarization, incidence. Transmission lines: transient analysis, TDR, phasor analysis, standing wave diagrams, Smith chart, impedance matching. Guided waves: TEM, TE and TM modes, dispersion, evanescent, cavity resonators. Microwave network analysis and device characterization with scattering parameters. Antennas, antenna arrays and Fourier optics. Additional topics from microwaves and optics will be covered as time allows. Students use a vector network analyzer to perform measurements at high frequencies. 4 credits. Prerequisites: Ma 223.

Ph 213 and ECE 111

ECE 141 Circuits & Electronics I
Circuit analysis: KVL, KCL, loop and nodal analysis, systematic and “shortcut” solution methods. Transient analysis of first, second and higher order RLC circuits, initial conditions. Introduction to diode and transistor models and circuits. 3 credits. Prerequisite: Ma 113

ECE 142 Circuits & Electronic II
MOS circuits: DC operation and analysis. Single stage MOS amplifiers, circuit design, DC and small signal analysis. Cascode amplifier. Current mirrors, active loads. BJT and MOS differential amplifiers. Monolithic operational amplifiers. Output stages. Frequency response. Introduction to feedback theory, amplifier topologies. Circuit design and analysis are supplemented with industry standard CAD software. 3 credits. Prerequisites: ECE 131, ECE 141

ECE 150 Digital Logic Design
(formerly EE 150) Theoretical and practical issues concerning design with combinational and sequential logic circuits, and programmable logic devices. Number systems, Boolean algebra, representation and simplification of Boolean functions, universal logic families. Finite-state machines, state tables and state diagrams, flip-flops, counters, registers. Adders, decoders, comparators, multiplexers, memories and applications. Programmable devices: PLA, PLD, etc. Principles of analog circuits are presented in the context of real world problems, such as “glitches,” power and ground bounce, contact bounce, tri-state logic and bus interfacing, timing circuits, asynchronous versus synchronous circuit components. Characterization of electronic and logical properties of digital circuits. Course work involves individual and team projects in which: digital circuits are designed and prototypes are constructed and tested on breadboards; designs involving programmable logic devices are developed using CAD tools. The projects, approximately 50 percent of the course grade, are used to assess technical writing, oral presentation, teamwork and project management skills. 3 credits. Prerequisites: none. Non-refundable materials fee: $40

ECE 151 Computer Architecture
(formerly EE 151) Basic structure of computers based on the von Neumann model. Generic one-bus, two-bus and three-bus architectures. Stack based design. Tri-state logic and interfacing to a bus. Aspects of bus timing and maximum running speeds. Instruction sets: 1, 1½, 2, 3 and more operand instructions. Operand addressing modes including case studies. Computer subsystems: (a) memory: dynamic and static RAM, refresh cycles, asynchronous data transfers; (b) I/O: interrupts vs. polling, ISRs and program controlled I/O. The control unit: microprogramming vs. hardwired controllers. Horizontal vs. vertical microinstructions. The execution of a program; instruction fetch and execution sequences; PC, IR and other special registers. Computer peripherals and secondary storage. Course work involves the building of advanced digital circuits using VLSI programmable chips provided in a kit of parts. Introduction to parallel and pipelined architectures. 3 credits. Prerequisite: ECE 150. Non-refundable materials fee: $40

ECE 161 Programming Languages

ECE 164 Data Structures & Algorithms I
An introduction to fundamental data structures and algorithms, with an emphasis on practical implementation issues and good programming methodology. Topics include lists, stacks, queues, trees, hash tables and sorting algorithms. Also an introduction to analysis of algorithms with big-O notation. Assignments include programming projects and problem sets. 2 credits. Prerequisite: ECE 161
ECE 165 Data Structures & Algorithms II A continuation of ECE 164, also with an emphasis on practical implementation issues and good programming methodology. Topics include graphs, graph related algorithms and dynamic programming techniques. Also an introduction to some advanced topics such as robotics or bioengineering. Students perform all aspects of project management, such as scheduling, budgeting, system design and developing milestones, as well as technical work including hardware and software implementation, testing and performance evaluation. Students also give several spontaneous and rehearsed oral presentations and prepare written reports. Students attend weekly lectures covering: social, economic, legal and ethical issues; safety and laboratory practice; design methodologies; technical writing; preparation of multimedia presentations and tailoring presentations to target audiences. 3 credits. Prerequisite: ECE 164. Non-refundable materials fee: $40

ECE 193 Electrical & Computer Engineering Projects I (formerly EE 160) An introduction to laboratory techniques for electrical and computer engineering. Electronic test equipment including: DVM, oscilloscope, curve tracer, spectrum analyzer. Circuit analysis and design, discrete and integrated electronic components and circuits. Several projects of limited scope provide an understanding of the fundamental building block employed in the more advanced designs in successful projects courses. Students give weekly oral presentations and demonstrate laboratory proficiency through in-class demonstrations and concise, formal technical reports. 1½ credits. Prerequisites: ECE 111, ECE 141 and ECE 150. Non-refundable materials fee: $40

ECE 194 Electrical & Computer Engineering Projects II (formerly EE 161) Principles learned in ECE 193 are applied to the design, construction and characterization of electrical and computer engineering projects of significant complexity. Assignments typically involve both analog and digital design, and students are free to pursue any solution that satisfies the engineering requirements and meets with the instructor’s approval. Formal and informal lectures are given on safety, circuit operation and design, and construction techniques; participation in design reviews and technical reports. 4 credits. Prerequisite: ECE 193. Non-refundable materials fee: $40

ECE 195 Electrical & Computer Engineering Projects III (formerly EE 162) ECE 195 and ECE 196 constitute the year-long senior design project. Students work in small groups on projects chosen with the advice and consent of the faculty adviser. Projects may be oriented towards research or product development, and may be in any area of electrical and computer engineering, such as in: computer engineering, signal processing (imaging, sensor arrays, multimedia), telecommunication, computer networks, microwave, optics, advanced electronics, VLSI chip design, or an interdisciplinary area such as robotics or bioengineering. Students perform all aspects of project management, such as scheduling, budgeting, system design and developing milestones, as well as technical work including hardware and software implementation, testing and performance evaluation. Students also give several spontaneous and rehearsed oral presentations and prepare written reports. Students attend weekly lectures covering: social, economic, legal and ethical issues; safety and laboratory practice; design methodologies; technical writing; preparation of multimedia presentations and tailoring presentations to target audiences. The initial goal is to achieve a functioning system. Afterwards, students undertake the completion of the prototyping cycle, which may involve improving the circuit implementation (such as by employing PCBs populated with surface mount chips), adding a user-friendly interface, obtaining precise performance evaluations, or developing demonstrations and a user’s manual. Advanced students are strongly encouraged to complete their project early and commence a master’s thesis. 3 credits. Prerequisite: ECE 195. Non-refundable materials fee: $40

ECE 301 Communication Systems Design (formerly EEE 301) Topics in the design of large scale communication systems. Quality of service, system performance calculations, channel capacity and traffic models, scalability. Measurement and simulation techniques. Noise, interference, system noise figure, front-end design, power budgets. Communication electronics. Baseband DSP, IF and RF subsystems. Standards, evolution of technology, product roadmapping. Case studies. 3 credits. Prerequisites: ECE 101 and ECE 125

ECE 302 Probability Models & Stochastic Processes Topics in probability, random variables and stochastic processes applied to the fields of electrical and computer engineering. Probability, events, random variables, expectation, moments, characteristic functions, conditional probability and expectation. Functions of random variables, random vectors, Gaussian random vectors, Poisson points. Bounding and limit theorems. Relations among important distributions and probability models. Stochastic processes: stationarity, ergodicity, Brownian motion, Markov processes. Deterministic systems with stochastic inputs, correlation and power spectral density, ARMA models. Hilbert space and applications; orthogonality principle, discrete Wiener and Kalman filters, linear prediction, lattice filters. 3 credits. Prerequisites: Ma 224 and ECE 101 or ECE 114 or permission of instructor

ECE 305 Computer Security This course covers attack and defense perspectives of applied information security. Topics will include networked and embedded applications, access controls systems and their failure modes, privilege escalation, case studies and some applied cryptography. Safe practices and OS flaw mitigation will be reinforced throughout security-sensitive programming projects. Course work will include penetration testing, code auditing and independent programming projects using professional auditing frameworks. 3 credits. Prerequisite: CS 102

ECE 309 Introduction to Cryptography (formerly EE 360) Selected topics in theoretical and applied cryptography, with an emphasis on “provably secure” systems. One-Time Pads and security in the Shannon sense, cryptographic hash functions, password schemes, basic number theory, hardcore bits, pseudo-random number generators and properties of pseudo-randomness (computational indistinguishability), block and stream ciphers, public key cryptography, message authentication and digital signatures. Real world examples including S/Key, DES, RSA, Diffie-Hellman. Students will have the choice to either program an implementation for a crypto-system or write a research paper. 3 credits. Prerequisites: Ma 111 and Ma 224

ECE 311 System Design for Signal Processing Applications Design of digital signal processing systems. Implementation of DSP algorithms in programmable and custom VLSI processors. A/D and D/A converters. Real-time systems that handle large amounts of data such as sensor arrays, radar, medical imaging, and multimedia networks. 3 credits. Prerequisites: ECE 114 and ECE 151

ECE 313 Music & Engineering Spectral representation and analysis of music. Analog and digital music signals, Instruments and synthesizers, analog circuits and digital processing. Description of musical quality and perception, introduction to acoustics, stereo and special effects. Computer interfacing with MIDI and laboratory experiments. 3 credits. Prerequisites: ECE 111, ECE 1150

ECE 323 Embedded System Design (formerly EE 381) Hardware and software design for embedded systems. SBC and microcontroller architectures, A/D and D/A conversion, signal conditioning, interfacing and controlling electronic and electromechanical systems. Assembly language and high-level language programming, efficient use of computational and physical resources, considerations for speed and robustness, debugging methods, use of simulators and in-circuit emulators. The course is project-based, and students are required to design and construct an embedded system. 3 credits. Prerequisites: ECE 121 and ECE 151
3 credits. Prerequisites: ECE131, ECE142.

ECE 343 Bio-instrumentation and Sensing (formerly EE 391) The basic human vital signs and some related elementary physiology viewed from an engineering standpoint with special emphasis placed upon current electronic measurement methods. Electrocardiographic and electromyographic signals. Safety problems related to electrical isolation. Guarded, fully isolated, modulated carrier operational amplifiers and microvolt-level amplification. Solid-state "grain of wheat" pressure sensors, microelectrodes, thermal probes, ultrasonic transducers and other biosignal sensors. Course work includes instrumentation and sensing projects.
3 credits. Prerequisites: ECE 114 and ECE 142.

ECE 361 Software Engineering & Large Systems Design This course teaches about the development stages of large, robust, expandable software systems developed as part of a team. Topics include project management, capturing requirements, system design, UML, program design, testing, delivery and maintenance. The class will develop a large project as a team using Java throughout the semester. Tools, libraries and techniques necessary for the project will be covered in class, e.g., Eclipse, Javadoc, XML, SOAP, servlets, threads and processes, Swing, JUnit, mySQL, JDBC, etc. The specific resources might change from semester to semester.
3 credits. Prerequisite: ECE165.

ECE 391 Research Problem An elective course open to qualified upper division students. Students may approach an EE faculty member and apply to carry out research on problems of mutual interest in theoretical or applied electrical and computer engineering. Student performs creative work with faculty guidance.
3 credits. Prerequisite: Instructor approval.

ECE 392 Research Problem II Continuation of ECE 391.
3 credits. Prerequisite: Instructor approval.

ECE 399 Selected Topics in Electrical & Computer Engineering (formerly EE 399) Subjects may include seminars on topics related to advances in technology, current research areas. Also individual research, design and development or study of subjects in electrical and computer engineering.
1-3 credits. Prerequisite: Permission of instructor.

ECE 401 Selected Topics in Communication Theory (formerly EE 401) Advanced topics in communications engineering, selected according to student and instructor interest.
3 credits. Prerequisite: ECE101 and permission of instructor.

ECE 402 Selected Topics in Probability & Stochastic Processes Advanced topics in applied probability or stochastic processes. Possible areas of study include: Markov processes, queuing theory, information theory, stochastic systems, financial engineering.
3 credits. Prerequisite: ECE 302 and permission of instructor.

ECE 403 Advanced Communication Networks (formerly EE 407) A continuation of topics from ECE 103. Technical readings, case studies, and research in network architectures and protocols. Related topics such as distributed computing and ad hoc sensor networks may be covered as well. Topics from probability, stochastic processes and graph theory are presented as needed for the analysis and simulation of communication networks.
3 credits. Prerequisite: ECE 103.

3 credits. Prerequisites: ECE 399 and Ma 224; Ma 352 recommended.

ECE 410 Radar & Sensor Array Processing Terminology and system overview for modern radar and sensor array systems; antenna parameters; radar signals and waveforms; Doppler processing; detection; synthetic aperture imaging (SAR); beamforming and space-time array processing (STAP); adaptive methods; additional topics may be covered according to student and instructor interest. Computer simulations and readings in the technical literature.
3 credits. Prerequisites: ECE 101, ECE 114.

ECE 411 Selected Topics in Signal Processing Advanced topics in signal processing selected according to student and instructor interest, and instructor approval.
3 credits. Prerequisite: ECE 114 and permission of instructor.

ECE 412 MRI Systems A seminar course covering various topics in magnetic resonance imaging systems and applications. Strategies for design for k-space sampling and pulses. Fast imaging techniques, multi-channel MRI systems. Measurement and analysis of image quality and artifacts. Motion measurement and artifacts. Angiography-imaging blood flow, dynamic imaging of the heart. Various clinical applications. Technical readings and field trips.
3 credits. Prerequisites: Ma 417 and ECE 114, or permission of instructor.

ECE 413 Robust Digital Signal Processing (formerly EE 413) Modern DSP algorithms are presented under the unifying concepts of passivity and structurally lossless realizations. Robust design perform well under non-ideal conditions, such as finite-precision arithmetic and failure of stationarity and other statistical assumptions. The theory of bounded real functions, lossless multiports, realization by extraction and interconnection of elementary lossless building blocks is presented. Applications include mitigating quantization effects in conventional and adaptive filters. Connections are also established with: multirate systems and filter banks; spectral analysis and stochastic realizatin.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 415</td>
<td>Wavelets & Multiresolution Imaging</td>
<td>Formerly EE 415; same as Ma 415</td>
</tr>
<tr>
<td>ECE 416</td>
<td>Adaptive Filters</td>
<td>Formerly EE 416; Statistical signal processing theory: discrete-time Wiener and Kalman filters, linear prediction, steepest descent and stochastic gradient. LMS, normalized LMS, LS, RLS, QR-RLS, order-recursive algorithms. Applications include equalization, noise cancellation, system identification, sensor array processing. Numerical linear algebra: eigenanalysis, SVD, matrix factorizations. Transversal filters, lattice filters, systolic arrays. Performance: convergence, learning curves, misadjustment, tracking in nonstationary environments. Additional topics such as adaptive IIR filters, neural networks and quantization effects may be covered as time allows. Extensive use of MATLAB.</td>
</tr>
<tr>
<td>ECE 417</td>
<td>DSP System Design</td>
<td>Formerly EE 417; Design of programmable and custom digital signal processors, and implementation of DSP algorithms in specialized architectures. Features of programmable DSPs such as data- and time-stationary coding, MAC and ACS ALUs, circular buffers. Very Long Instruction Word (VLIW) processors. Applications of graph theory and passivity theory to map DSP algorithms to custom structures: SFGs, DFGs, retiming, folding and unfolding, lattice and orthogonal filters, scheduling and allocation, systolic architectures. Optimization with respect to number of hardware units, speed (sample period and latency), VLSI area, power consumption and performance (quantization effects), Special CAD tools and languages for rapid prototyping. Case studies and programming exercises.</td>
</tr>
<tr>
<td>ECE 418</td>
<td>Digital Video</td>
<td>Formerly EE 418; Digital video coding, compression, processing and communications. Target applications from low bit-rate, low quality to high bit-rate, high quality. Two- and three-dimensional sampling, color spaces, motion representation. Motion estimation: optical flow, block-matching; constrained optimization: Bayesian methods, simulated annealing, Gibbs random fields. Mathematical basis for compression standards such as JPEG and MPEG, and digital television including HDTV. Rate-distortion based compression for optimal bit allocation via dynamic programming (Viterbi algorithm). Scalability in multimedia systems.</td>
</tr>
<tr>
<td>ECE 421</td>
<td>Advanced Control System Design</td>
<td>Formerly EE 471; Design of control systems using two-degrees of freedom and PID compensators. Ackermann’s formula, H-infinity control theory and applications. Analysis and design for nonlinear systems using describing function, state-variables, Lyapunov’s stability criterion and Popov’s method. Introduction to optimal control theory (dynamic programming). Design problems and extensive use of MATLAB.</td>
</tr>
<tr>
<td>ECE 422</td>
<td>Selected Topics in Embedded Systems</td>
<td>Formerly EE 482; A project-oriented interdisciplinary course, where students design and construct embedded systems for particular applications. Aspects of mechanics, robotics, process control, bioengineering, communications, electronics, motors and motor drivers, sensors, actuators, signal conditioners, interfaces, computer hardware and computer programming. Problems encountered in real systems including: interrupts, timing, grounding, thermal and noise effects, documentation, reliability.</td>
</tr>
<tr>
<td>ECE 423</td>
<td>Digital & Microprocessor Control</td>
<td>Formerly EE 464; A project-oriented interdisciplinary course on microprocessor-based control systems. Process control, PID algorithm, numerical machine tool control, robotics, measuring and controlling thermal, electrical, mechanical, biomedical and chemical systems. Considerations of overall system stability, logic design, response time and the design of algorithms. Student projects.</td>
</tr>
<tr>
<td>ECE 431</td>
<td>Microwave Engineering</td>
<td>Formerly EE 421; Passive circuits, open-boundary waveguides, perturbation theory, coupled modes, waveguide junctions, microstrip. Two- and three-terminal devices; varactor diodes, Gunn diodes, IMPATT and MESFET technology. Design of RF amplifiers and phase-shifters. Computer aided simulation and design.</td>
</tr>
<tr>
<td>ECE 432</td>
<td>Optical Communications Devices & Systems</td>
<td>Formerly EE 406; PIN, avalanche and Schottky photodiodes; risetime, noise, amplifier requirements. Semiconductor optical devices: radiative and non-radiative recombination, quantum semi-conductors, heterojunctions, quantum wells, bandwidth minimization, lasers, distributed feedback, vertical cavity structures. Internal and external modulation, electro-optic modulators, Stark effect. Optical fibers: mode structure, attenuation, dispersion, PM fibers, WDM. System architecture, analog/digital communications, terabit data links. Solitons.</td>
</tr>
<tr>
<td>ECE 441</td>
<td>Digital Integrated Circuit Engineering</td>
<td>Design of static and dynamic CMOS combinational logic gates, layout and simulation. Standard cell construction. Sequential logic systems— registers, latches, clocks. Design of arithmetic building blocks, ALU, multipliers. Memory circuits and organization. FPGA, System design— hardware description languages, floor-planning, system architecture. A major component of the course is the design and fabrication of an ASIC using a variety of VLSI CAD tools.</td>
</tr>
</tbody>
</table>
ECE 442 Communication Electronics Course work includes computer-aided design and produce current state-of-the-art communication systems. Design of high-frequency amplifiers, oscillators and mixers using large signal analysis. Effects of noise and non-linearities are examined from the diode and transistor level to board level. Communication subsystems of interest include phase locked loops, modulators and demodulators (AM, PM, FM), and signal processors for multiple access systems (TDMA, FDMA, CDMA). Course work includes computer-aided simulation and design projects. 3 credits. Prerequisites: ECE 101, ECE 135 and ECE 142

ECE 443 Thin-Film Electronics (formerly EE 440) Properties of polycrystalline, amorphous, liquid and organic semiconductors. Methods of deposition: vacuum and nonvacuum techniques, epitaxial and non-epitaxial growth. Assessment of thin film semiconductors: structural, optical, electrical. Thin film semiconductor devices: transistors, displays, photovoltaics, flexible conductors. Optical coatings and architectural applications. Thin film superconductors: metallic, allow and high Tc, fabrication and assessment. Superconducting devices: Cooper pairs, Josephson junctions, SQUIDS, Josephson computers. 3 credits. Prerequisites: ECE 131 and ECE 142

ECE 445 Design with Operational Amplifiers Analysis and design of operational amplifier circuits with various applications, including amplifiers, filters, comparators, signal generators, D/A and A/D converters and phase-locked loops. Introduction to issues such as static and dynamic limitations, noise and stability. Use of industry standard CAD software. 3 credits. Prerequisite: ECE142

ECE 445 Design with Operational Amplifiers Analysis and design of operational amplifier circuits with various applications, including amplifiers, filters, comparators, signal generators, D/A and A/D converters and phase-locked loops. Introduction to issues such as static and dynamic limitations, noise and stability. Use of industry standard CAD software. 3 credits. Prerequisite: ECE142

ECE 451 Advanced Programming Methods This course addresses the need for engineers to craft algorithmic solutions to problems of over-increasing complexity. The curriculum includes consideration of the man-machine interface, real-time control, remote sensing and computing in a distributed environment. Software fault tolerance and reliability and unbreakable database transactions. Computer network security and network reliability, safety of data through authentication and encryption. Engineering trade-offs between efficiency and portability and design for maintenance. 3 credits. Prerequisites: ECE151, ECE165

ECE 453 Advanced Computer Architecture This course studies modern, advanced techniques used to design and produce current, state-of-the-art computer architectures. Technology, performance and price. The quantitative principle and Amdahl’s law. Instruction sets; addressing modes, operands and opcodes; encoding instruction sets. RISC versus CISC architectures; MIPS. Pipelining; the classic five-stage pipeline, hazards, exceptions, floating point operations. Advanced pipelining techniques: dynamic scheduling, branch prediction. Multiple issue, speculation. Limits of parallelism. Compiler support for parallelism: VLIW, Caches. Examination of modern processors.

ECE 454 Database Management Systems Relational, hierarchical and network data models. Data sublanguages, relational algebra and relational calculus. Data independence and integrity. The database management system. Security and privacy, logs. Low-level file structures, organization and indexing. Data compression, protection and encryption. Distributed databases. Course work involves the design of relational systems using commercial packages, followed by the design and implementation of a small general database built around relational algebra. 3 credits. Prerequisite: ECE 165

ECE 455 Compiler Design Compiler Theory Regular expressions, production systems, grammars and language theory. Phases of compilation: lexical analysis, parsing and code generation. Standard compiler design tools such as Lex and YACC. Syntax directed translation, symbol tables and space reservation. Error detection at compile-time and run-time. Code generation and the run-time environment. Elements of code optimization. Course work involves the implementation of a compiler for a restricted language using standard tools and custom code. 3 credits. Prerequisites: ECE 151 and ECE 165

ECE 461 Advanced Programming Methods This course addresses the need for engineers to craft algorithmic solutions to problems of over-increasing complexity. The curriculum includes consideration of the man-machine interface, real-time control, remote sensing and computing in a distributed environment. Software fault tolerance and reliability and unbreakable database transactions. Computer network security and network reliability, safety of data through authentication and encryption. Engineering trade-offs between efficiency and portability and design for maintenance. 3 credits. Prerequisites: ECE151, ECE165

ECE 463 Web 2.0 Architecture & Development Software engineering and networking issues related to the development of Web 2.0 solutions, focusing on mobile, web and voice applications. Course work includes software projects and case studies. 3 credits. Prerequisites: ECE103, ECE 165 or permission of instructor

ECE 464 Databases (formerly EE 454) Database architecture. Relational, hierarchical and network data models. Data sublanguages, relational algebra and relational calculus. Data independence and integrity. The database management system. Security and privacy, logs. Low-level file structures, organization and indexing. Data compression, protection and encryption. Distributed databases. Course work involves the design of relational systems using commercial packages, followed by the design and implementation of a small general database built around relational algebra. 3 credits. Prerequisite: ECE 165

ECE 465 Compiler Theory Regular expressions, production systems, grammars and language theory. Phases of compilation: lexical analysis, parsing and code generation. Standard compiler design tools such as Lex and YACC. Syntax directed translation, symbol tables and space reservation. Error detection at compile-time and run-time. Code generation and the run-time environment. Elements of code optimization. Course work involves the implementation of a compiler for a restricted language using standard tools and custom code. 3 credits. Prerequisites: ECE 151 and ECE 165

ECE469 Artificial Intelligence
This course covers many subtopics of AI, focusing on a few important subtopics in detail. The “intelligent agent” approach is explained and forms a foundation for the rest of the course.

Natural language processing: syntax, semantics and pragmatics; real-world knowledge; parsing; statistical NLP.

Philosophy of AI: AI and consciousness, the Turing test, the Chinese room experiment. Coursework includes two large individual programming projects.
3 credits. Prerequisite: ECE165

ECE 491 Selected Topics in Electrical & Computer Engineering
(formerly EE 491) Subjects may include study in electrical and computer engineering, or seminars on topics related to advances in technology. This course may not be used to expand the number of credits of thesis, or cover material related to the thesis.
1-3 credits. Prerequisite: Permission of instructor

ECE 499 Thesis/Project
(formerly EE 499) Master’s candidates are required to conduct, under the guidance of a faculty advisor, an original individual investigation of a problem in electrical and computer engineering and to submit a written thesis describing the results of the work.
6 credits over 1 year

Electrical Engineering
(EE-coded)
Undergraduate

EE 121 Circuits, Signals & Systems I
Circuit elements and waveforms, network equations, loop and nodal analysis, matrix representations, systematic and “shortcut” methods. Transient analysis of first, second and higher order circuits, initial conditions, visualization in the complex plane. Sinusoidal steady-state, phasors, complex power. Laplace transforms with applications to circuit analysis. Introduction to systems analysis. Several assignments involve computer analysis of circuits, signals and systems.
3 credits. Prerequisite: Ma 113

EE 122 Circuits, Signals & Systems II
3 credits. Prerequisite: EE 121

EE 125 Engineering Electromagnetics I
3 credits. Prerequisites: Ma 223 and Ph 213

EE 126 Engineering Electromagnetics II
Guided waves, TE and TM modes, cylindrical waveguides with rectangular and circular cross-section, cavity resonators. Linear networks and scattering parameters. Antenna dipoles, apertures, antenna arrays, radiation patterns. Introduction to optical and microwave systems and devices, with applications to communications and signal processing. Every student uses a vector network analyzer.
3 credits. Prerequisites: EE 125

EE 141 Electronic Devices & Circuits I
Semiconductor principles. PN junction theory, diodes, diode models and circuit applications. Bipolar and field effect transistors: devices, models and the four basic circuit configurations. Linear BJT and FET amplifiers, discrete and integrated models, biasing, single stage, cascaded stages. Survey of integrated circuit fabrication techniques. Theoretical principles are supplemented with design problems.
3 credits. Prerequisite: EE 121

EE 142 Electronic Devices & Circuits II
3 credits. Prerequisites: EE 122 and EE 141
Undergraduate

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credits</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 100</td>
<td>Stress and Applied Elasticity</td>
<td>Three-dimensional theory of elasticity; state of stress, state of strain, elastic strain-stress relations. Applications include elementary three-dimensional problems, plate stress and plane strain, Saint Venant’s long cylinder, beams and plates. Computer-aided design projects. 3 credits. Prerequisite: ESC 101.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 101</td>
<td>Mechanical Vibrations</td>
<td>Mechanical systems with single and multiple degrees of freedom; longitudinal, torsional and lateral vibrations; free and forced oscillations; vibration testing, dynamic stability, vibration isolation, design criteria. Computer-aided design assignments. 3 credits. Prerequisite: ESC 101.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ME 105</td>
<td>Drawing and Sketching for Engineers. (same as EID 105)</td>
<td>Skill in use of computer-aided analysis and 3D design software in solving engineering problems and in creating and visualizing engineering designs is among the most basic of an engineer’s toolbox. This course takes students through a hands-on learning experience in the practice of a contemporary analysis tool, such as MATLAB, and a contemporary 3D design tool, such as SolidWorks. Topics include data structuring and programming; numerical modeling and analysis; technical drawing and engineering graphics; conception and a visualization of 3D engineering models, parts and assemblies; and detailed generative 2D drawings. 1.5 credits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 107</td>
<td>Computer-Aided Analysis and Design Techniques</td>
<td>Theory and use of musical scales, including just intonation and equal temperament systems. Musical harmony and basic ear training. Human hearing and the subjective measures of sound; pitch, loudness and timbre. Acoustic analysis of design and operating principles of traditional instruments, including members of the percussion, string and wind families. Prototyping and testing of original musical instrument concepts. 3 credits. Prerequisite: permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 120</td>
<td>Design Elements</td>
<td>Application of the principles of mechanics to the design of basic machine elements; study of components subjected to static, impact and fatigue loading; influence of stress concentration; deflection of statically determinate and indeterminate structures by the energy method. Design projects apply basic criteria to the design of shafts, springs, screws and various frictional elements; design projects make use of computer, experimental and modeling techniques. 3 credits. Prerequisite: ME 100.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 130</td>
<td>Advanced Thermodynamics (same as EID 130)</td>
<td>Curved and near-term energy sources, including coal, oil, natural gas, nuclear fission, hydroelectric, oil shale and refuse. Description of contemporary methods of energy conversion including conventional utility power plants and nuclear power plants. Introduction to direct energy conversion; magnetohydrodynamics, fuel cells, thermionic and thermoelectric. Design of the thermodynamic operation of a steam power plant. 3 credits. Prerequisite: ESC 130.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 131</td>
<td>Energetics (same as EID 131)</td>
<td>Current and near-term energy sources, including coal, oil, natural gas, nuclear fission, hydroelectric, oil shale and refuse. Description of contemporary methods of energy conversion including conventional utility power plants and nuclear power plants. Introduction to direct energy conversion; magnetohydrodynamics, fuel cells, thermionic and thermoelectric. Design of the thermodynamic operation of a steam power plant. 3 credits. Prerequisite: ESC 130.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 133</td>
<td>Air-Conditioning, Heating and Refrigeration (same as EID 133)</td>
<td>Introduction to air-conditioning, heating and refrigeration, with emphasis on application of thermodynamics, fluid dynamics, mass transfer and heat transfer; psychrometrics, cycles, load calculation, component and system performance; absorption, refrigeration, heat pumps, solar heating and cooling. 3 credits. Prerequisite: ESC 130, ESC 140.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 140</td>
<td>Gas Dynamics</td>
<td>Three-dimensional compressible flows, including isentropic flow, isothermal flow, flow with friction, flow with heat transfer and normal and oblique shock waves; generalization one-dimensional flow. Computer applications and a semester-long design project. 3 credits. Prerequisites: ME 130, ESC 140.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 141</td>
<td>Fundamentals of Aerodynamics (same as EID 153, ESC 140)</td>
<td>Study of incompressible potential flow around bodies of aerodynamic interest, by the use of equations of motion, method of singularities and conformal transformation. Investigation of experimental results and techniques. Consideration of the effects of viscosity and transition from laminar to turbulent flow. A design-oriented project, usually involving application of computer methods, will be required. 3 credits. Prerequisite: ESC 140.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 142</td>
<td>Heat Transfer: Fundamentals and Design Applications</td>
<td>One-dimensional steady-state conduction. Two-dimensional steady-state conduction and transient conduction; finite-difference equations and computational solution methods. Convection; introduction to laminar and turbulent viscous flows; external and internal forced convection problems, including exact and numerical solution techniques; free convection. Introduction to radiation heat transfer and multimode problems. Open-ended design projects will include application to fins, heat exchangers, tube banks and radiation enclosures and will make use of computer-aided design techniques. 3 credits. Prerequisite: EID 140.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 151</td>
<td>Feedback Control Systems</td>
<td>Modeling and representation of dynamic physical systems: transfer functions, block diagrams, state equations, and transient response. Principles of feedback control and linear analysis including root locus and frequency response methods. Practical applications and computer simulations using MATLAB. Discussions of ethics will be integrated into the curriculum. 3 credits. Prerequisite: Ma 240, ESC 161.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 153</td>
<td>Mechatronics (same as EID 153, ESC 140)</td>
<td>Modeling and representation of dynamic physical systems: transfer functions, block diagrams, state equations, and transient response. Principles of feedback control and linear analysis including root locus and frequency response methods. Practical applications and computer simulations using MATLAB. Discussions of ethics will be integrated into the curriculum. 3 credits. Prerequisite: EID 153.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 155</td>
<td>Design and Prototyping</td>
<td>A mechanical engineering hands-on workshop geared towards the understanding and practice of basic engineering design and fabrication tools. Topics include hand tools, simple machining, mold making, casting, materials, fasteners, adhesives, and finishes. 3-D digitizing, solid modeling, rapid prototyping and computer interfacing will also be presented. Team projects will familiarize the students with typical tools and processes employed in realizing a design concept, from sketch to functional prototype. Each student will participate in and contribute to the team-learning and creation process. 2 credits. Prerequisite: EID 101.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 160</td>
<td>Engineering Experimentation</td>
<td>Selection, calibration and use of subsystems for the measurement of mechanical, thermal/fluid and electrical phenomena. Laboratory work includes investigations of heat exchangers, fluid systems and internal combustion engines. Emphasis is placed on data collection and statistical reduction, computational methods and written and oral presentation skills. 3 credits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 163</td>
<td>Mechanical Engineering Projects</td>
<td>Original investigations, involving design and experimental work which allow the application of engineering sciences to the analysis and synthesis of devices or systems and permit the deepening of experience in engineering decision making. Projects are carried out in small groups and are supervised by the instructor in accordance with professional practice. 3 credits. Prerequisite: permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 164</td>
<td>Capstone Senior ME Design</td>
<td>Application of open-ended design work to the synthesis of engineering devices and systems for the satisfaction of a specified need. Consideration of market requirements, production costs, safety and aesthetics. Projects are carried out in small groups and are supervised by the instructor in accordance with professional practice. The goal of the course is to create a working design, clearly defined in drawings and specifications. 3 credits. Prerequisite or co-requisite: ME 163.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ME 165 (same as EID 165) Sound and Space
Basics of acoustics, including sound waves, room and hall acoustics and metrics of sound. Audio engineering, including microphones, signal processors, amplifiers and loudspeakers. Skills and techniques using Pro Tools brand audio editor system to create original sonic and musical compositions. Public exhibition of an electronic music program. 3 credits. Prerequisite: permission of instructor

ME 300 Space Dynamics
Fundamental principles of advanced dynamics; kinematics, transformation or coordinates; particle and rigid body dynamics. Application to space problems; satellite orbits; gyro-dynamics, space vehicle motion; performance and optimization. Generalized theories of mechanics; virtual work, D'Alembert's principle; Lagrange's equation; Hamilton's principle. 3 credits. Prerequisite: ESC 100

ME 312 Manufacture Engineering (same as EID 312). Study of metal processing theory and application with emphasis on casting, machining, and metal deformation processes; plastic forming; special processing techniques; work-holder design principles. Specific areas studied include stages of processing, mathematical modeling of processes, equipment determination, relationship of plant layout, tooling, metrology, and product design to product cost. 3 credits. Prerequisite: EID 101

ME 313 Science of Materials for Engineering Design (same as EID 313). This course is intended to give the student the tools with which to design with materials: to choose an existing material for a new application or design the ideal material to replace one in use. The materials studied cover the full range: metals, ceramics, glasses, polymers, composite materials and wood. Topics include phase diagrams and phase transformations, structure and strength, normal use and failure, all with an eye on design. 3 credits. Prerequisite: ESC 110 or ESC 110.1

ME 314 (same as EID 314). 3 credits. Prerequisites: ESC 101, ESC 110 or ESC 110.1

ME 320 Mechanical Design
Mechanical design of basic transmission elements; design optimization by blending fundamental principles and engineering judgment; design criteria for the various frictional machine elements. Design projects provide authentic involvement in problems from industry; design projects make use of computer, experimental and modeling techniques. 3 credits. Prerequisite: ME 120

ME 321 Engineering Kinematics
Study of motion conversion through various types of mechanical components, using analytical and graphical techniques. Velocity and acceleration analysis; special kinematic devices, synthesis of mechanisms; linkage design. Theory applied to creative project assignments. 3 credits. Prerequisite: ESC 100

ME 322 Dynamics of Machines
Application of mechanics to rigid bodies as found in machines and machine elements. Dynamics of machines as influenced by the kinematics of the motion, externally applied forces and self-generating inertia forces. 3 credits. Prerequisite: ME 101

ME 330 Advanced Engine Concepts
Development of energy efficient, high-output, cleaner engine systems. Broad analytical and experimental review of the governing parameters involved in engine design and optimization. Topics include thermodynamics, fluid mechanics, heat transfer, combustion, emissions, thermochemistry, dynamic and static loading, and fuel efficiency, as they apply to different engine cycles and types. Research examples from industry, government and academic are reviewed. Stationary and mobile applications, with particular emphasis on automotive engine design, are analyzed from first principles. Students develop hands-on learning skills through computational and experimental assignments. 3 credits. Prerequisite: ME 142 or permission of instructor

ME 332 Internal Combustion Engine Design
Increasingly stringent environmental and economic climates have prompted the development of energy-efficient, high-output, cleaner engine systems. This course is a broad analytical and experimental review of the governing parameters involved in engine design and optimization. Topics include thermodynamics, fluid mechanics, heat transfer, combustion, emissions, thermochemistry, dynamic and static loading and fuel efficiency, as they apply to different engine cycles and types. Research examples from industry, government and academic are reviewed. Stationary and mobile applications, with particular emphasis on automotive engine design, are analyzed from first principles. Students develop hands-on learning skills through computational and experimental assignments. 3 credits. Prerequisite: ME 142 or permission of instructor

ME 333 Combustion (same as EID 334). Thermodynamics and kinetics of reacting systems. Conservation laws for reacting gas mixtures. Gas phase and heterogeneous phase diffusion flames, including supersonic diffusion flames and fuel droplet combustion in liquid propellant rocket engines and in residential oil burners. Premixed flames in gases. Detonation waves in gases. Examples of current research in aerospace and environmental aspects of combustion processes. 3 credits. Prerequisite: ESC 141 or ME 142

ME 340 Advanced Aerodynamics
Study of ideal compressible flow around aerodynamic bodies by the use of linearized subsonic and supersonic theory. Investigation of computational techniques and experimental methods and results. Consideration of real gas and viscous effects and hypersonic flow. 3 credits. Prerequisites: ESC 130 and ME 141

ME 343 Fluid Machinery
The application of fluid mechanics and thermodynamics to the analysis and design of turbomachines. Topics to be studied include theory and three-dimensional flows. Both axial and radial flow fans, blowers, compressors, pumps and turbines will be considered as well as special topics in turbo-machinery. A design project, usually involving application of computer methods, will be required. 3 credits. Prerequisites: ESC 130, ESC 140

ME 352 Advanced Control Theory (same as EID 352). Tools and methods of control system design and compensation; simulation, specifications, frequency domain techniques, state variable feedback, sensitivity analysis. Specific topics covered are controllability, observability, Lyapunov stability, pole placement technique, full order observers, reduced order observers and output feedback. Emphasis will be placed on modern control theory. Group design project to build working prototype. Both engineering economics and ethics will be addressed when presenting the final working prototype. 3 credits. Prerequisite: ME 151 or ECE 121 or ME 152

ME 353 Transducers, Sensors and Computer Interfacing (same as EID 353). Transducers and sensors are widely used in engineering and scientific research and as an integral part of products and automated systems. Students will be introduced to numerous available techniques for sensing displacement, force, pressure, acceleration, temperature, radiation and other physical parameters; digital computation and digital transducers; computer interfacing such as analog and digital conversion, signal processing, interface components, communication; software systems such as programming real-time systems and real-time operating systems. The instructor will present case histories of several industries instrumentation and sensing systems. Projects provide authentic involvement in problems from industry that require computer interfacing and experimental techniques. 3 credits. Prerequisite: permission of instructor

ME 356 Digital Control and Non-linear Control (same as EID 356). Introduction to digital control systems, z-transformations, discrete equivalents to continuous transfer functions, design of digital controllers, non-linear control theory. Laboratory experiments will be performed which will include control of the speed of a motor through computer programming. 3 credits. Prerequisite: ME 151

ME 363-364 Selected Topics in Mechanical Engineering
This course will deal with current technological developments in various fields of mechanical engineering. Projects and design will be emphasized. 3 credits each. Prerequisite: ME faculty permission
ME 365 Mechanical Engineering Research Problem An elective course available to qualified students. Students may elect to consult with an ME faculty member and apply to carry out independent research on problems of mutual interest in theoretical or applied mechanical engineering. 3 credits. Prerequisite: ME faculty permission and senior standing. May be repeated.

Graduate

ME 401 Advanced Mechanical Vibrations Study of the transition from discrete to continuous systems; analytical and numerical methods as applied to axial and transverse systems; formulation of complex dynamic systems by the energy method; introduction to nonlinear and random vibrations. System design augmented by Holzer and Matrix interaction on the computer; computer-aided design projects directly from industry. 3 credits. Prerequisite: ME 101

ME 402 Advanced Stress Analysis Elements of stress and deformation analysis. Numerical and analytical techniques include finite difference, relaxation, finite element, complex variables and energy and variational methods. Applications include torsion, two-dimensional problems, bending of bars, elastic stability, wave propagation, thin plates and shells and curved beams and plates. 3 credits. Prerequisite: ME 100

ME 403 Advanced Engineering Dynamics Elements of classical dynamics: kinematics, kinetics, work and energy, impulse and momentum, vibration. Motion of a system of particles and rigid bodies. Lagrangian dynamics. 3 credits. Prerequisite: ME 101

ME 404 Automotive Engineering Fundamentals An introductory course in modern automotive design, covering aspects of prime movers, aerodynamics, brakes, tires, steering, suspension, and advanced hybrid powertrain concepts. Simulations and physical prototyping give students a hands-on approach to the design, optimization, fabrication and testing of various vehicle subsystems in a team-based learning environment. 3 credits. Prerequisite: ME 130 or permission of instructor

ME 405 Automotive Engineering Fundamentals An introductory course in automotive design, covering aspects of prime movers, aerodynamics, brakes, tires, steering, suspension and handling, chassis and advanced hybrid powertrain concepts. Simulations and physical prototyping give students a hands-on approach to the design, optimization, fabrication and testing of various vehicle subsystems in a team-based learning environment. 3 credits. Prerequisite: ME 130 or permission of instructor

ME 407 Introduction to Computational Fluid Dynamics The need for and applications of computational fluid dynamics (CFD). Introduction to CFD analysis and commercially available codes. Governing equations and numerical solution methodologies for basic fluid flow systems. Geometric modeling and grid generation. Examination of various physical models. Use of a commercial CFD code. 3 credits. Prerequisite: ESC 140

ME 410 Materials and Manufacturing Process (same as EID 410). In manufacturing operations, materials are subjected to large forces for producing useful shapes. This course attempts to establish an understanding of the behavior of materials in response to such forces. Topics covered will include elastic behavior, plasticity, strengthening mechanisms, basic manufacturing processes and testing. Vital aspects of the continuum behavioral response of materials to manufacturing processes will be covered emphasizing the mechanical and metallurgical factors that control the processes. 3 credits

ME 412 Autonomous Mobile Robots This course introduces basic concepts, technologies, and limitations of autonomous mobile robots. Topics include digital and analog I/O, tactile sensing, IR sensing and range finding, light sensing, sonar, magnetic field sensing, encoders, DC motor actuators, servo motor actuators, high-level microprocessor control, low-level microprocessor control, power management, and prototyping. Students will form teams to design and build autonomous mobile robots configured to compete with each other in a single-match game, or to perform a team-oriented task. 3 credits. Prerequisite: ME 153 or ECE 151

ME 413 Microelectromechanical Systems (MEMS) Advances in the design, fabrication, analysis and control of microelectromechanical systems (MEMS) have positioned MEMS at the forefront of high-value, cutting-edge technologies. The scope of this course covers both the fundamental and advanced aspects of MEMS. Topics include introduction to MEMS, materials and fabrication processes, sensors and actuators, microfluidics, scaling principles, device concepts and system design. MEMS processing simulation and modeling, testing and packaging of MEMS will also be presented. Furthermore, exposure to basic MEMS processing and cleanroom protocol will be included. 3 credits. Prerequisite: ESC 110 or ESC 110.1

ME 415 Introduction to Nanotechnology Understanding and control of matter at dimensions in the range from one to 100 nanometers for novel applications are the main objectives of nanotechnology. The scope of this course encompasses nanoscale science and engineering. Typical topics will include the unique properties of some nanometer scale materials, processing and fabrication technologies for nanomaterials, imaging, measuring, modeling and manipulating matter at this length scale. In addition, laboratory demonstrations on nanomaterials processing, nanodevice and device self-assembling of nanostructures will be included. 3 credits. Prerequisite: ESC 110 or ESC 110.1

ME 417 Mechanobiology Mechanical factors play important roles in development, maintenance of healthy tissue, the initiation of disease and the development of repair strategies. This course will introduce students to the principles and disease, and the development of repair strategies, as well as to the principles and concepts of mechanobiology through the investigation of recent work in the field. Specific topics will include mechanical regulation of cell behavior, applications to tissue engineering, mechanotransduction and experimental techniques. 3 credits. Prerequisites: ESC 101 and Bio 101, or permission of instructor

ME 420 Axiomatic Design (same as EID 420), 3 credits. Prerequisite: permission of instructor

ME 421 Rehabilitation Engineering (same as EID 421), 3 credits. Prerequisite: permission of instructor

ME 423 Measurement of Human Performance (same as EID 423), 3 credits. Prerequisite: permission of instructor

ME 425 Product Design I (same as EID 425), 3 credits

ME 426 Product Design II Continuation of ME/EID 425. 3 credits. Prerequisite: ME/EID 425

ME 430 Thermodynamics of Special Systems (same as EID 430 and CHE 430), 3 credits. Prerequisite: ME 130

ME 431 Heat Convection Conservation equations; forced convection in laminar and turbulent flows; natural convection; combined natural and forced convection; heat transfer at high velocities, special heat transfer problems. 3 credits. Prerequisite: ESC 141

ME 432 Heat Conduction and Radiation Theory of heat conduction in isotropic and anisotropic solids; analytical, graphical and numerical solutions to steady- and non-steady-state heat conduction equations. Thermal radiation in absorbing and non-absorbing media. Application to selected problems involving combined energy transport mechanisms and to heat transfer problems of current interest. 3 credits. Prerequisite: ESC 141

ME 434 Special Topics In Combustion (same as CHE 434). Analysis of diffusion and premixed flame processes, including droplet and particle flames, combustion in sprays, chemical reactions in boundary layers, combustion instability in liquid and solid rocket engines and gas burner flames. Consideration of ignition and quenching processes and flammability limits. 3 credits. Prerequisite: ME 334

ME 440 Advanced Fluid Mechanics (same as EID 440 and CHE 440), 3 credits. Prerequisites: ESC 140 and permission of instructor
ME 451 Introduction to Applied Optimal Control Theory and Design
An introduction to the concepts and techniques utilized in the analysis and design of optimal (deterministic) control systems. Topics include a review of state-space control systems concepts; reduced order observers and state-feedback controllers; basic theory of linear quadratic optimal control; standard regulator problem; optimal tracking systems; introduction to the calculus of variations and functional optimization; utilization of computer-aided optimal control systems design software such as MATLAB. Techniques developed will be applied, in the form of student design projects, to a variety of challenging control systems design problems.
3 credits. Prerequisite: ME 151 or ECE 121 or ChE 152

ME 453 Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) (same as EID 453)
Computer design aids, languages, databases, and data structures; geometric modeling; rapid prototyping; design verification, simulation, and testing; investigation of commercial CAD/CAM packages. Student projects include geometric modeling with commercial CAD/CAM packages, team-based product design, and programming of basic CAD applications. Students are grouped into design teams and are expected to work on a term project starting with specifications, carrying out the full work and documentation of actual design processes.
3 credits. Prerequisite: ECE 161

ME 455 Optimal Estimation Methods (same as EID 455)
Introduction to linear and nonlinear estimation methods with emphasis on both theory and implementation. Batch and sequential strategies, real-time and post-estimation estimation are covered. Includes both parameter estimation and state estimation. Topics covered are a review of probability and optimization, parameter estimation (linear and nonlinear least squares), minimal variance and maximum likelihood estimation, system identification and estimation, Kalman filtering, smoothing, covariance propagation for continuous and discrete systems as well as linear and nonlinear, real-time and post-processing and minimum model error estimation. Students will work on realistic problems such as global positioning using geosynchronous satellites. MATLAB software used extensively.
3 credits. Prerequisite: ME 151 or ECE 121 or ChE 152

ME 457 Optimization Techniques for Design (same as EID 457)
Optimization techniques with applications in various aspects of engineering design. Concepts of design variables, constraints, objective functions, penalty functions, Lagrange multipliers. Techniques for solving constrained and unconstrained optimization problems: classical approaches, steepest descent, conjugate directions, conjugate gradient, controlled random searches, etc. Discussion of generalized reduced gradient, sequential linear programming, and recursive quadratic programming strategies. Special topics will be discussed such as optimum sensitivity analysis, multilevel optimization, and integer programming. Computer implementation of optimization schemes. Applications and examples in the design of engineering components and systems. A design project will be assigned that will require the use of several optimization schemes.
3 credits. Prerequisite: Ma 223

ME 458 Industrial Robots (same as EID 458)
Basic concepts, techniques, and limitations of modern industrial robots; industrial automation; robot programming languages; definition and description of a robot work space; application of transform and operator matrices in industrial robotics. Student projects include computer programming of forward and inverse kinematics, and application programming with an industrial robot.
3 credits. Prerequisite: ECE 151

ME 464 Computer-Integrated Manufacturing (same as EID 464)
Fundamentals of computer-aided design, analysis, and manufacturing; geometric modeling, IGES, PDES, and STEP; rapid prototyping; mechanism simulation and finite element analysis; CNC part programming and machining; group technology and process planning. Student projects emphasize concurrent engineering and teamwork.
3 credits. Prerequisite: ME 312

ME 470 Microelectromechanical systems (MEMS)
The course covers the fundamental and advanced aspects of MEMS. Topics include introduction to MEMS, materials and fabrication processes, sensors and actuators, microfluidics, scaling principles, device concepts and system design. MEMS processing simulation and modeling, testing and packaging of MEMS will also be presented. Exposure to basic MEMS processing and clean-room protocol will be included.
3 credits. Prerequisite: ESC 110
ME 493-494 Selected Advanced Topics in Mechanical Engineering
These courses will deal with current advanced technological developments in various fields of mechanical engineering. Projects and design will be emphasized.
3 credits. Prerequisite: ME faculty permission and graduate standing

ME 499 Thesis/Project Master’s candidates are required to conduct, under the guidance of a faculty adviser, an original investigation of a problem in mechanical engineering, individually or in a group and to submit a written thesis describing the results of the work.
6 credits for full year

Undergraduate

ESC 000.1-000.4 Engineering Professional Development Seminars The Engineering Professional Seminars and Workshops offer students an introduction to the profession of engineering as well as deal with their development as students. Cooper Union’s CONNECT program is an integral part of these courses and provides intensive training in effective communications skills. A wide range of topics is covered in addition to communications skills including ethics, environmental awareness, life-long learning, career development, conflict resolution, entrepreneurship, marketing, work-place issues, team dynamics, professional licensure and organizational psychology.
0 credits. Attendance required by all first and second year students. Pass/Fail grade based on attendance and participation

ESC 100 Engineering Mechanics
Equivalent system of forces; distributed forces; forces in structure; friction forces. Particle and rigid body mechanics; kinematics, kinetics. Newton’s laws of motion; work and energy; impulse and momentum.
3 credits. Prerequisite: Ph 112

ESC 101 Mechanics of Materials
Introduction to solid mechanics; analysis of stress and deformation. Extension; flexure; torsion. Asymmetric problems, beam theory elasticity, yield and failure theory.
3 credits. Prerequisite: ESC 100

ESC 110 Materials Science
The objective of this course is to promote an understanding of the relationship between the molecular structure of a material and its physical properties. Topics include bonding in atoms and molecules, crystallinity, metals and alloys, polymers, mechanical properties of inorganic materials and composite materials.
3 credits

ESC 110.1 Materials Science for Chemical Engineers Understanding relationships among atomic or molecular structures, physical properties and performances of substances. Bonding, crystallinity, metals, alloys and polymers. Mechanical properties of inorganic and composite materials. Selection of materials for process equipment design, its effect on economics. Design concerning effect of corrosion and its prevention.
3 credits

ESC 120 Principles of Electrical Engineering
Survey of Electrical Engineering for the non-major. Signal and circuit analysis, DC and AC circuits, transients, frequency response and filters, power systems. Additional topics may be covered as time permits.
3 credits. Prerequisite: Ma 113

ESC 121 Basic Principles of Electrical Engineering
Selection of topics from ESC 120. This class meets with ESC 170 for the first ten (10) weeks.
2 credits. Prerequisite: Ma 113

ESC 130 Engineering Thermodynamics
Rigorous development of the basic principles of classical thermodynamics. Zeroth, first and second laws of thermodynamics and their applications to open and closed systems. Analysis of thermodynamic processes, properties of real substances and thermodynamic diagrams.
3 credits

ESC 130.1 Chemical Engineering Thermodynamics
First law of thermodynamics for closed systems; perfect gases, 2- and 3-phase systems of one component; transient and steady state analyses using the first law of thermodynamics for open systems; second law of thermodynamics; introduction to concepts of entropy. Gibbs free energy and Helmholtz free energy; derivation and application of equations describing the auxiliary thermodynamic functions and conditions of equilibrium in imperfect gasses.
3 credits. Prerequisites: Ch 160, ESC 170

ESC 140 Fluid Mechanics and Flow Systems
Introductory concepts of fluid mechanics and fluid statics. Development and applications of differential forms of basic equations. Dynamics of inviscid and viscous fluids, flow measurement and dimensional analysis with applications in fluid dynamics. Friction loss and friction factor correlation; design of piping systems.
3 credits

* A student may not exceed 7 credits combined from EID 362 and EID 363.
Undergraduate

ESC 141 Transport Phenomena
A unified approach to the rate processes involved in heat, mass and momentum transfer, including chemically reactive systems; reviews of generalized rate equation, mechanisms of transport processes; equations of continuity, motion and energy; applications to conduction, radiation, convective heat and mass transfer and diffusion; emphasis on the derivation of the applicable differential equations and methods of solving same for both laminar and turbulent flows; macroscopic balances for non-isothermal systems.
3 credits. Prerequisite: ESC 140

ESC 160 Systems Analysis
An introductory course in the basic concepts and techniques of systems analysis and optimization and their application to planning, design and management of large-scale engineering systems. Topics include production functions, marginal analysis, linear and dynamic programming, decision analysis, project evaluation and selection, systems modeling and economic methods. Methodology is demonstrated through design projects.
3 credits

ESC 161 Systems Engineering
An introductory course to the mathematical modeling of systems. Topics include mechanical elements and systems, electric circuits and analogous systems, fluid elements and systems, analysis of systems using transfer functions, state space equations, analog simulation and digital simulation. Also covered are block diagrams, Laplace transforms, and linear system analysis. Computer projects will be assigned that will use MATLAB software.
3 credits

ESC 170 Material and Energy Balances
Introduction to the analysis of chemical process systems, using material and energy conservation equations. Estimation of thermodynamics and thermochemical properties of real fluids for engineering calculations. Numerical methods and their implementation on the digital computer for solution of chemical engineering problems.
3 credits. Prerequisite: Ch 160

EID 101 Engineering Design and Problem Solving
Students work on cutting-edge, exploratory design projects in inter-disciplinary groups of 20 to 25. Each project has an industrial sponsor/partner who is available for student/faculty consultation and support. Oral and visual presentations as well as formal written reports are required for all projects. Professional competencies, team-work, human values and social concerns are stressed in the engineering design.
3 credits

EID 102 Introduction to Computer Science
This course has been remembered: see CS 102.
3 credits

EID 103 Principles of Design
This course is designed to introduce students from all disciplines to the concepts of rational design. It is open to first-year students and sophomores. In the first part of the course students will learn by hands-on experience the importance of giving attention at the design stage to consideration of accessibility, repair, replacement, choice of materials, recycling, safety, etc. Students will develop the ability to make observations and record them in suitable form for further analysis of the design process. From this, concepts of “good” design will be developed, and students will be introduced to the formal design axioms and principles. This will lead to the second part of the course which will consist of a comprehensive, realistic design problem. Creativity, intuition and cultivation of engineering “common sense” will be fostered within the framework of design principles and axioms. The course will constitute a direct introduction to the disciplines in their interdisciplinary context.
3 credits. Prerequisite: EID 101

EID 105 Drawing and Sketching for Engineers
This course introduces engineering students to the fundamentals of free-hand drawing and sketching with an emphasis on the interpretation and communication of insights, concepts and dimensioned solutions. Drawings and sketches are often the first steps in innovative engineering solutions and invention. The primary goal of this course is to provide a comprehensive foundation in traditional drawing and sketching methods for engineers.
2 credits

EID 110 Engineering Design Graphics
This course is for students who are well versed in basic AutoCAD and want to develop their 3D modeling skills plus learn how to customize the system. Course work includes writing custom AutoCAD menus and programs that are useful for the various engineering disciplines, using the Lisp programming language. Students will be given a number of 3D modeling assignments throughout the semester, building up to a final term project that utilizes their 3D modeling skills as well as their programming and customization knowledge.
3 credits. Prerequisite: permission of instructor

EID 111 Design, Illusion and Reality
There is much that we can do as engineers, artists and architects to restore the necessary constructive connection between humankind and nature. In this, a small but vital step is to see the design process in any branch of human activity as a whole and not as a matter of watertight compartments arbitrarily contrived. By taking a variety of particular examples from real situations, having known backgrounds in engineering, art and architecture, students get a glimpse of how the design processes are initiated and how the subsequent available options are resolved. The emphasis will be on the synthesis of, rather than the analytical approach to, problem solving.
1-3 credits

EID 112 Interactive Graphic Design
The course teaches usage of the web as a medium for publishing, exhibition, and communication. It familiarizes students with programming languages (HTML), Java Script, and graphic software (Photoshop, Illustrator, Flash, and DreamWeaver). Besides the technical aspects, the course also introduces the basic artistic design principles, such as color, typography, composition, and layout. Furthermore, the practical issues of designing and organizing information for web communication will be discussed. Overall, students will develop proficiency in creatively and persuasively presenting information. Projects include assignments on individual programming languages and design principles. The main project is to construct a website for the presentation of a product or idea. The format of the class consists of lectures, studio time, presentations, and critiques.
3 credits: 4 hours—NOTE: This course cannot be taken for credit as a technical elective by EE students

EID 120 Bioengineering in Safety, Design and Injury Analysis and Prevention
Accident reconstruction. Correlation between the events of an accident and injuries sustained. Analysis of sports injuries. Effects of seat belts/air bags in vehicular accidents. Analysis of injuries sustained by failure of equipment, medical devices, etc. Industrial and construction accidents. Special computational techniques to pinpoint product defects and reconstruct the chain of events leading up to and occurring during an accident.
3 credits. Prerequisite: ESC 100; co-requisite: ESC 110

EID 121 Biotransport Phenomena
Engineering principles are used to mathematically model momentum, heat and mass transfer processes that occur in biological systems. After a general introduction to human anatomy and physiology, topics examined include blood rheology, circulatory system fluid dynamics, whole body heat transfer, vascular heat transfer, oxygen transport in tissue and blood, pharmacokinetics and the design of an artificial kidney (hemodialysis).
3 credits. Prerequisite: junior standing

EID 122 Biomaterials
3 credits. Prerequisite: permission of instructor

EID 123 Biosystems and Instrumentation
Introduction to mathematical modeling and the formulation of analogs for biological systems. Electrical aspects of nerve signals, coupled with their analysis and measurement. Design and construction of electro-cardiographic systems. Computer analysis of electro-cardiograms. Applications of systems theory to various physiological subsystems including muscle response and pupillary-retinal response. Laboratory work required.
3 credits. Prerequisite: Superior grades or at least one course in control theory. Suggested for seniors only
EID 125 Biomechanics An in-depth treatment of orthopaedic biomechanics, including free-body analysis applied to the musculoskeletal system, applied statics, dynamics and kinematics. Clinical problems relating to biomechanics. Lubrication theory applied to hard and soft tissues. Mechanical testing of tissue, including both static tests and dynamics tests. Tensor treatment of kinematic motions. Extensive reference to current literature. Muscle function, evaluation and testing. Exploration of the concepts of development of muscular power, work and fatigue. 3 credits. Prerequisites: ESC 100 and permission of instructor

EID 131 Energetics (same as ME 131). 3 credits. Prerequisite: ESC 130

EID 133 Air-Conditioning, Heating and Refrigeration (same as ME 133). 3 credits. Prerequisites: ESC 130, ESC 140

EID 140 Environmental Systems Engineering (Same as CE 141). 3 credits. Prerequisite: permission of instructor

EID 141 Air Pollution Control Systems System design for particulate, gas, and vapor recovery. Study of dynamics of particulate behavior in fluid stream, Brownian motion, interception, inertial impact; target geometry and effects, nucleation and particle growth; energy consumption and collection efficiency. Diffusional operations studies, transfer unit requirements. Kinetics of diffusion in gas-gas, gas-solid, gas-solid and gas-extended surface systems. Unsteady-state behavior, surface renewal; wave-front analysis. Effect of fluid dynamics. Energy consumption related to transfer units. Fundamentals of mechanisms in real systems. Design problems. 3 credits

EID 142 Water Resources Engineering (Same as CE 142). 4.5 credits (3 hours of lecture, 3 hours of laboratory). Prerequisite: ESC 140

EID 153 Mechatronics (same as ME 153)

EID 160 Acoustics, Noise and Vibration Control Inter-disciplinary overview of acoustics and its applications in industrial and environmental noise control, acoustics of buildings, vibration systems and control. Topics include: sound levels, decibels and directivity, hearing, hearing loss and psychological effect of noise, noise control criteria and regulations, instrumentation, source of noise, room acoustics, acoustics of walls, enclosures and barriers, acoustics materials and structures, vibration control systems; design projects. 3 credits. Prerequisite: permission of instructor

EID 165 (same as ME 165) Sound and Space Basics of acoustics, including sound waves, room and hall acoustics and metrics of sound. Audio engineering, including microphones, signal processors, amplifiers and loudspeakers. Skills and techniques using Pro Tools brand audio editor system to create original sonic and musical compositions. Public exhibition of an electronic music program. 3 credits. Prerequisite: permission of instructor

EID 170 Engineering Economy Comparison of alternatives in monetary terms; meaning and use of interest rates; results evaluation including intangibles; risk in alternatives; principles underlying the determination of economic life; depreciation and depreciation accounting; financing business ventures; financial statement analysis; replacement of capital assets. 3 credits. Prerequisite: Ma 113

EID 176 Legal and Ethical Aspects of Engineering A survey of the courts and their jurisdiction; civil and criminal law; equity jurisprudence; expert witness, contracts and the importance of business law to the engineer. Other topics include patents, trademarks and copyrights; product liability; unfair competition; professional ethics and professional advancement. 3 credits

EID 300 Special Research Project Students will work on individual projects in engineering under supervision of faculty. Problems will vary according to individual interest. Permission to register is required from the Office of the Dean of Engineering. Students on academic probation are ineligible for registration. 3–6 credits

EID 311 Production Automation Concepts and principles of automated production lines; analysis of high volume, discrete parts production systems in metal working industry; partial automation; mechanical assembly systems. Features of numerically controlled machine tools, NC part programming, control loops of NC systems, computerized numerical control, adaptive control system, group technology, flexible manufacturing systems, application of manufacturing engineering principles to optimize manufacturing process flow. Student projects with emphasis upon design and application. 3 credits. Prerequisite: CS 102

EID 312 Manufacturing Engineering (same as ME 312). 3 credits. Prerequisite: EID 101

EID 313 Science of Material for Engineering Design (Same as ME 313). 3 credits. Prerequisite: EID 101

EID 314 Introduction to Composite Materials (same as ME 314). Composite materials are becoming increasingly important to engineering applications in mechanical, aerospace and civil engineering. This new course offers both basic principles and some general applications for composite materials and structures. The knowledge students acquired from this course will prepare them for both advanced graduate study and practical engineering practice in industry. In this course a design project will also be assigned so that the students can use what they have learnt in the course to design a pressure vessel using laminated composite materials for optimal strength of the structure. 3 credits. Prerequisites: ESC 110 or ESC 110.1

EID 320 Special Topics in Bioengineering Seminars on topics of current interest in biotechnology. 3 credits. Prerequisites: a basic understanding of engineering mechanics and materials; permission of instructor. May be repeated

EID 325 Science and Application of Bioengineering Technology The overall purpose of the course is to provide the student with a general overview of the scope of bioengineering. The major areas in the course are design in biomedical engineering, tissue engineering, medical imaging, cardiovascular, vision, rehabilitation, musculo-skeletal system, robotic surgery and medical business. 3 credits. Prerequisites: permission of instructor

EID 326 Ergonomics Principles of human-machine interactions with emphasis on the design of the workplace/machine, for maximum output or minimum risk to the operator. Mechanics of injury; case studies. 3 credits. Prerequisite: EID 120

EID 327 Tissue Engineering Tissue Engineering involves the application of engineering and the life sciences to gain a fundamental understanding of structure-function relationships in normal and pathological tissues and the development of biological substitutes to restore, maintain or improve tissue functions. This course will provide an introduction to the science, methods and applications of tissue engineering. Topics include: quantitative cell biology, tissue characterization, engineering design and clinical implementation. 3 credits. Prerequisites: working knowledge of engineering fundamentals, senior standing or instructor approval

EID 330 Introduction to Neurophysiology and the Biophysics of Neural Computation (Same as Ph 330). 3 credits

EID 357 Sustainable Engineering and Development Sustainable engineering is examined, starting with an analysis of resources, materials, energy, water upon which manufacturing is based. Each resource is critically examined in terms of its availability and form and the ultimate impact of its usage on the state of the planet. A comparison of the design and construction of contemporary and primitive structure is used to illustrate the differences between the required infrastructure and environmental footprint, leading to a definition of “green” design. The technologies required to support contemporary lifestyles in the developed and the developing world are discussed within the context of manufacturing techniques, usage of natural resources and the generation of waste. Workshops, guest
Chemistry Courses

lectures and a term project incorporating the concepts of minimalism, materials usage, and aesthetic design are used to present students with a unique perspective engineering.
3 credits. Prerequisite: permission of instructor

EID 334 Combustion
(same as ME 334).
3 credits. Prerequisite: ESC 141 or ME 142

EID 352 Advanced Control Theory
(same as ME 352).
3 credits. Prerequisite: ME 151, ECE 121 or OIE 152

EID 353 Transducers, sensors and computer interfacing
(same as ME 353).
3 credits. Prerequisite: permission of the instructor

EID 356 Digital Control and Non-linear Control
(same as ME 356).
3 credits. Prerequisite: ME 151

EID 362 Interdisciplinary Senior Project I
Individual or group design projects in interdisciplinary areas of engineering. These projects are based on the interest of the students and must have the approval of their adviser(s) and course instructor. Periodic and final engineering reports and formal presentations are required for all projects. In addition to technical aspects projects must also address some of the following: economic feasibility, environmental impact, social impact, ethics, reliability and safety.
3 or 4 credits*. Prerequisite: students are required to have completed necessary preparatory engineering courses related to the project topic.

EID 363 Interdisciplinary Senior Project II
Continuation of EID 362.
3 or 4 credits*. Prerequisite: EID 362

EID 364 Interdisciplinary Engineering Research Problem
An elective course, available to qualified upper division students. Students may approach a faculty mentor and apply to carry out independent or group projects in interdisciplinary fields.
3 credits. Prerequisites: Permission of adviser(s)

EID 365 Engineering and Entrepreneurship
Students will learn the fundamentals of being an entrepreneur and operating a successful business. From its original idea to the open market, students will choose an engineering related project or service and learn the principles of accounting, marketing, managing, financing, and continuing research. Students are required to choose their own service or product and write a business plan as their final project. Lectures include case studies on the various projects and guest speakers from the industry. Readings include articles from journals and textbooks.
3 credits

EID 370 Engineering Management
An exploration of the theories and techniques of management beginning with the classical models of management and continuing through to Japanese and American contemporary models. The course is specifically directed to those circumstances and techniques appropriate to the management of engineering. Lecture, discussion and case studies will be used.
3 credits

EID 371 Operations Management
An in-depth exploration of specific problems and techniques applicable to the management of production and large operating systems (e.g., engineering projects). The specific problems of demand analysis, capacity planning, production and inventory planning as well as scheduling and progress control will be presented. In addition, the concepts of total quality management, material requirements planning and statistical quality control will be presented. The presentation will include lectures and case problems.
3 credits. Prerequisite: EID 370

EID 372 Global Perspectives in Technology Management
Current global political, social and economic developments and future trends as they relate to technology management are discussed. Students learn to address issues of international technology transfer, multinational sourcing, quality control, diverse staff management, environmental considerations, etc. Working in teams on case studies and projects, students learn to conduct international negotiations and develop solutions to complex business problems. Special emphasis is placed on team cooperation and personal leadership. Oral presentations and written reports are required.
3 credits. Prerequisite: permission of ME faculty required

EID 373 Patent Law
In this course a student will study patent law in detail; the requirements for obtaining a patent (“utility, novelty and non-obviousness”); “trade secrets” as an alternative to patent protection; computer software and “business methods” as patentable subject matter. The class will focus on the theoretical (patent cases from the U.S. Supreme Court and the Federal Court, the patent statute, 35 U.S.C.) and the practical analysis of issued patents; individual and group exercises in drafting and critiquing patent claims, familiarity with the Manual of Patent Examining Procedure. The course is open to juniors, seniors, graduate students and faculty.
3 credits. Prerequisite: permission of the instructor

EID 374 Business Economics
In this course, the class will carry out a real-time forecast of the U.S. economy and explore its implications for the bond and stock markets. The course will build upon principles of both macro- and micro-economics. It will provide an introduction to the work done by business economists and the techniques they use. Students will become familiar with the database looking for relationships between key economic variables, and studying movements in interest rates over the period 1960-present. The class will be divided into teams of two students with each team choosing a particular aspect of the economy to forecast. The class will also work with various leading indicators of economic activity and will prepare forecasts of the key components of gross domestic product and other important variables. A formal presentation of the economic with invited guests from the Wall Street investment world will take place. To put forecasting exercise in context, there will be class discussions of business cycles, credit cycles, long waves in inflation and interest rates and the impact of the Internet on the economy and the stock market.
3 credits. Prerequisites: either S 334, S 347, or, EID 170, or, permission of the instructor

CE 380 Fundamentals of Construction Management
3 credits. Prerequisite: permission

<table>
<thead>
<tr>
<th>Computer Science</th>
<th>Mathematics Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate</td>
<td>EID 435 GeoEnvironmental Engineering (same as CE 439). Discussion of pertinent regulations and regulatory programs relevant to contaminated soil. Identification and characterization of contaminated soils, discussion of current treatment technologies both ex-situ and in-situ. Geotechnical design of waste facilities, the closure and improvement of waste facilities and construction on waste utilization of waste for engineering purposes, the reuse and recycling of contaminated soil. 3 credits. Prerequisites: ESC 140, CE 141, CE 131 and permission of instructor</td>
</tr>
<tr>
<td>EID 410 Materials and Manufacturing Processes</td>
<td>EID 436 Product Design II (same as ME 426). An interdisciplinary design course project open to graduate and senior students. Students will work in small teams to design and build an engineered solution to real-world problems. This is an advanced product development class to initiate students to industrial practice. 3 credits. Prerequisite: permission of instructor</td>
</tr>
<tr>
<td>EID 414 Solid Waste Management</td>
<td>EID 437 Advanced Thermal Engineering (same as CE 440). Introduction to advanced analytical and numerical solution techniques for steady and unsteady conduction processes, radiation, and thermal transfer, free convection, forced convection, diffusion and chemical reactions. 3 credits. Prerequisite: ESC 140, ME 440, or ME 441.</td>
</tr>
<tr>
<td>EID 420 Axiomatic Design</td>
<td>EID 438 Industrial Waste Treatment Design (same as CE 440). An interdisciplinary course project open to graduate and senior students. Students will conduct research and design and fabricate a device to evaluate a single muscle group. Interdisciplinary teams will be encouraged. 3 credits. Prerequisite: permission of instructor</td>
</tr>
<tr>
<td>EID 421 Rehabilitation Engineering</td>
<td>EID 439 Water and Wastewater Technology (same as CE 441). 3 credits. Prerequisite: permission of instructor</td>
</tr>
<tr>
<td>EID 422/CE 422 Finite Element Methods</td>
<td>EID 440 Advanced Fluid Mechanics (same as ChE 440 and ME 440). Introduction to multi-dimensional steady and unsteady compressible flow, velocity distribution, velocity potential, streamline function, turbulent flow, Boundary layer theory, Supersonic flows. 3 credits. Prerequisites: ESC 140, ME 440.</td>
</tr>
<tr>
<td>EID 410 Materials and Manufacturing Processes (same as ME 410) 3 credits.</td>
<td>EID 441 Advanced Heat and Mass Transfer (same as ChE 441). Principles of heat and mass transfer are used to solve various engineering problems. Topics studied include analytical and numerical solution techniques for steady and unsteady conduction processes, boundary layer flow, radiative phenomena, turbulent flow, heat transfer, combined convection and radiation, diffusion mass transfer and chemically reacting systems. 3 credits. Prerequisite: ESC 141</td>
</tr>
<tr>
<td>EID 414 Solid Waste Management (same as CE 414). 3 credits. Prerequisite: permission of instructor</td>
<td>EID 442 Geothermal Energy (same as CE 442).</td>
</tr>
</tbody>
</table>
EID 449 Hazardous Waste Management (same as CE 449). 3 credits. Prerequisite: permission of instructor

EID 452 Principles of Interactive Computer Graphic: Point plotting, line drawing and raster graphics techniques. Two-dimensional transformations, clipping and windowing, graphical input devices and techniques. Graphics data structures and display lists. Principles of three-dimensional representation and solid modeling concepts. Specialized computer architectures for graphics. User interface design. Each student will undertake a design project to realize some aspect of the course material, related to his or her area of specialization. (This course will be limited to 8 students.) 3 credits. Prerequisite: ECE 161

EID 453 Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) (same as ME 453). 3 credits. Prerequisite: ECE 161

EID 455 Optimal Estimation Methods (same as ME 455).

EID 457 Optimization Techniques For Design (same as ME 457). 3 credits. Prerequisite: Math 223

EID 458 Industrial Robots (same as ME 458). 3 credits. Prerequisite: ME 312

EID 464 Computer-Integrated Manufacturing (same as ME 464). 3 credits. Prerequisite: ME 312

EID 480 Challenges Facing Engineering Start-ups in Innovative Technologies This course will address the various issues facing engineering start-ups in innovative technologies such as urban security engineering businesses, distributed electric generators, bio-medical engineering businesses. Topics include definition of mission and core values, business plans financing strategies, marketing considerations, intellectual property issues, employee relations and regulatory hurdles. The course will feature guest speakers with first-hand experience in relevant start-ups. 3 credits. Prerequisite: Open to seniors and graduate students

EID 481 Environmental Economics How environmental regulations affect economic growth. Analytical framework and tools: valuing the environment for decision making; marginal damage function and marginal abatement cost: risk assessment; alternatives assessment; cost-benefit analysis; cost-effectiveness: distributive equity; precautionary principle. Issues relating to air, water, energy and materials. Environmental health issues. Creation of markets for new technologies. 3 credits

Bio 101 Molecular and Cellular Biology This course will cover the fundamental principles of cell and molecular biology: structure and function of major cell organelles; basic principles of DNA replication, RNA transcription, protein synthesis, cell cycle/cell division; and signal transduction. Specialized topics in immunology, cancer, and other topics of current interest will be discussed. 3 credits. Prerequisites: Ch 110 and Ch 160, or permission of instructor

Bio 102 Cell Biology Studies of structures and functions of eukaryotic cells. Cell membranes and the endomembrane systems, proteins (with emphasis on structure and function), organelle biogenesis, intercellular trafficking, cytoskeleton and motility, cell cycle control and signalling. Methods of study and both landmark and contemporary experiments are examined. 3 credits

Undergraduate

Ch 110 General Chemistry An introduction to the general scientific principles associated with chemistry. This course will deal with fundamental ideas such as the concept of the atom, the molecule, the mole and their applications to chemical problems. The classical topics include: dimensional analysis and significant figures; atomic weights; periodic properties; chemical reactions and stoichiometry; redox reactions; ideal gas law and real gas equations of state; the liquid state and intermolecular forces; solution concentrations; chemical equilibrium and equilibrium constants; acids and bases; solubility equilibria; nomenclature of inorganic and organic compounds. The topics for atomic and molecular properties include: atomic structure and the quantum theory; electronic structure of atoms; the covalent bond and bond properties; molecular geometries and hybridization; molecular orbital theory. 3 credits

Ch 111 General Chemistry Laboratory Methods of quantitative analysis are used to explore chemical reactions and analyze unknowns. Modern chemical instrumentation as well as “classic” wet chemistry analytical techniques are covered. Statistical analysis of the experimental data is used to analyze results. Chemical laboratory safety and industrial chemical regulations are covered, as are the fundamentals of writing a technical report. 1.5 credits. Prerequisite: Ch 110; co-requisite Ch 160

Ch 160 Physical Principles of Chemistry The study of physical-chemical properties will be extended and advanced. The laws of thermodynamics, which involve energy, entropy and free energy concepts, will be applied to chemical systems. Other topics include: vapor pressures and colligative properties of solutions; the phase rule; kinetics of homogeneous reactions; electrolytic conductance and electrochemistry. 3 credits. Prerequisite: Ch 110; co-requisite: Ch 111

Ch 231 Organic Chemistry I Bond types and strengths, structural theory, bond angles and hybrid bonds; covalent bonds, polarity of bonds and molecules; dipole moments; molar refraction; melting points and boiling
Physics Courses

points relative to properties and

natures of molecules; solubilities based on structures; functional groups; critical temperature, pressure and volume as a function of structure and functional groups, prediction of vapor pressure curves, latent heats. Nomenclature isomers and properties. Resonance and delocalization of charge phenomena; acidity and basicity (Lewis concept). 3 credits. Prerequisite: Ch 160

Ch 232 Organic Chemistry II
Extension of Ch 231 to systematic study of aliphatic and aromatic compounds, with emphasis on functional behavior and interpretation of mechanisms and bond types, polyfunctional compounds, carbohydrates and heterocyclic compounds. 2 credits (2 lecture hours). Prerequisite: Ch 231; co-requisite Ch 233

Ch 233 Organic Chemistry Laboratory Laboratory work will cover subject matter studied in Ch 231 and Ch 232, including synthesis and type reactions and identification of organic compounds. 2 credits (4 laboratory hours). Prerequisite: Ch 231

Ch 251 Instrumental Analysis Laboratory Fundamental principles of instrumental methods will be covered, including laboratory applications and limitations in scientific research. Specific methods include electrometric, such as polarography, electrogravimetry and potentiometry; optical (such as visible and ultraviolet absorption), spectroscopy, emission spectroscopy and infrared spectroscopy; and other techniques such as chromatography and mass spectroscopy shall be included. 2 credits (4 laboratory hours). Prerequisite: Ch 160

Ch 261 Physical Chemistry I
With an emphasis on the basic theoretical justifications underlying observed physical phenomena, quantum mechanics will be developed and applied to the study of chemical systems with an emphasis on interpreting spectroscopic data. Modern methods of computational molecular modeling are introduced. Statistical mechanics is introduced as a link between quantum mechanics and thermodynamics. 3 credits. Prerequisites: Ch 160 and Ph 214

Ch 262 Physical Chemistry II
Continuation of Ch 261 with emphasis on electrochemistry, chemical kinetics and solid state chemistry. Selected topics. 2 credits. Prerequisite: Ch 261

Ch 333 Advanced Organic Chemistry
Modern areas of organic chemistry, including synthesis, structure determination, stereochemistry and conformational analysis, reaction mechanisms, photochemistry, conservation of orbital symmetry, molecular rearrangements and other selected topics. Advanced laboratory studies in research problem form. Typical problems would involve studies of the synthesis, structure and properties of organic compounds, utilizing modern instrumental techniques. Independent laboratory work may be arranged. 3 credits. (2 hours of lecture; 4 hours of Laboratory). Prerequisite: Ch 232

Ch 334 Physical Organic Chemistry
Molecular orbital theory in organic chemistry, orbital symmetry and stereoelectronic selection rules, rate theory, kinetic isotope effects, carbonium ions and rearrangements, acid-base catalysis, quantitative correlations of reactivity and other selected topics. 3 credits. Prerequisites: Ch 232, Ch 261

Ch 340 Biochemistry
This course in the fundamentals of biochemistry will cover the following: Chemistry of carbohydrates, lipids, amino acids, proteins, and nucleotides; bioenergetics; kinetics and mechanisms of enzymes; and an introduction to molecular genetics, and biochemical dynamics of DNA and RNA. 3 credits. Prerequisites: Bio 101, Ch 231

Ch 363 Advanced Physical Chemistry
Modern applications of physical chemistry and chemical physics are developed. Topics covered include: Quantum and classical statistical mechanics, phase space, and fluctuations. Intermolecular forces and their experimental/theoretical determination. Computational molecular modeling, including ab initio, semiempirical and molecular mechanics predictions of molecular properties, as well as Monte Carlo and molecular dynamics methods. Some projects will require computer programming. Applications to liquids, nanoclusters, polymers, surface adsorbates and biomolecules are considered. Guest speakers from academia and industry are invited to share their perspectives. 3 credits. Prerequisites: Ch 261, Ch 262 (or by permission from instructor)

Ch 364 Solid-State Chemistry
Solid-state reactions; nucleation and diffusion theory; thin films of elements and compounds; current topics. 3 credits. Prerequisite: Ch 262

Ch 365 Chemical Kinetics
Fundamental study of chemical reaction systems in gaseous and condensed phases; absolute rate theory; collision theory; energetics from molecular and macroscopic viewpoints. Experimental rate techniques, interpretation of experimental data. Reaction mechanisms and models for complex and elementary reactions. Homogeneous and surface catalysis; enzyme-controlled reaction rates. 3 credits. Prerequisite: Ch 262

Ch 370 Inorganic Chemistry
The vast and fascinating chemistry of inorganic compounds and materials will be covered. Atomic structure and the periodic table; molecular symmetry and spectroscopy selection rules; coordination chemistry; ligand-field theory and other electrostatic bonding models; superacids; reaction mechanisms; organometallic chemistry; chemistry of the heavy elements; nuclear chemistry. Chemistry and physics of ionic and molecular solids; atomic and molecular clusters; chemisorption and physisorption of surface-bound species; cage compounds and catalysts; bioinorganic chemistry. A useful course for chemical engineers to extend their knowledge of inorganic chemistry beyond the content of Ch 110. Strongly recommended for students interested in graduate work in chemistry. 3 credits. Prerequisites: Ch 110, Ch 160, Ch 231, Ch 261

Ch 380 Selected Topics in Chemistry
Study of topics related to specialized areas as well as advanced fundamentals. 2-6 credits. Chemistry faculty approval required
Faculty

Ch 391 Research Problem I
An elective course available to any qualified and interested student irrespective of year or major. Students may approach a faculty member and apply to carry out independent research on problems of mutual interest, in pure or applied chemistry. Topics may range from the completely practical to the highly theoretical, and each student is encouraged to do creative work on his/her own with faculty guidance.

3 credits

Ch 392 to 398 Research Problem II to VIII
This is intended to allow students to continue ongoing research. 3 credits each. Prerequisite: permission of research advisor and student’s adviser(s)

Graduate

Ch 440 Biochemistry II
Continuation of Ch 340. Discussion of metabolism: Glycolysis, Glycogen Metabolism, Transport through membranes including ATP-Driven Active Transport and Ion Gradient-Driven Active Transport, Citric Acid Cycle, Electron Transport and Oxidative Phosphorylation, Lipid Metabolism including Fatty Acid Oxidation and Biosynthesis, Cholesterol Metabolism, Arachidonic Metabolism, Prostaglandins, Prostacyclins, Thromboxanes and Leukotrienes; DNA Repair and Recombination, Eukaryotic Gene Expression including Chromosome Structure, Genomic Organization, Control of Expression, Cell Differentiation.

3 credits. Prerequisite: Ch 340

CS 102 Introduction to Computer Science
Introduction to Engineering Problem Solving using algorithms and their design. Logics and basic analysis techniques are explored using programming languages ‘C’, C++ and Java. Students will also master one or more significant engineering design packages such as MATLAB, AUTOCAD, MAPLE, MATHEMATICA etc. Projects will be assigned.

3 credits, no prerequisites

Undergraduate

Ma 110 Introduction to Linear Algebra

2 credits

Ma 111 Calculus I
Functions; limit of functions, continuity. The derivative and its applications: curve sketching, maxima and minima, related rates, velocity and acceleration in one dimension; trigonometric, exponential, logarithmic and hyperbolic functions. Definite and indefinite integrals; area, the fundamental theorem, techniques of integration.

4 credits

Ma 113 Calculus II

4 credits. Prerequisite: Ma 111; Prerequisite or co-requisite: Ma 110

Ma 151.1 Mathematics in Art
This course deals with the period beginning with Pythagoras in ancient Greece and goes up to the present day. Topics include: Goedel’s incompleteness theorem, Euclidean and non-Euclidean geometries, infinity, paradoxes, soap film experiments. Also discussed are black holes, the Big Bang theory, relativity and quantum theory. The course is open to all Cooper Union students but is primarily oriented toward making the above-mentioned concepts comprehensive to those with very little mathematics in their background. Engineering students should see the Mathematics faculty and their adviser(s) for permission to take this course. The relatedness of seemingly distant fields (science, art, mathematics, music) is a central theme of the course.

3 credits

Ma 163-164 Calculus and Analytic Geometry I, II
Second year mathematics course for architecture students. Emphasis is on topics that involve the mathematical approach to geometrical and physical relationships and on basic concepts and applications of calculus of functions of one and two variables.

3 credits each semester. Cannot be used to satisfy any degree requirement in the School of Engineering

Ma 223 Vector Calculus

2 credits. Prerequisite: Ma 113. Usually given in fall and spring semesters

Ma 224 Probability and Statistics

2 credits. Prerequisite: Ma 113. Corequisite Ma 223. Usually given in both fall and spring semesters

Ma 224.1 Probability and Statistics

3 credits. Prerequisites: Ma 113. Co-requisite Ma 223

Ma 240 Ordinary and Partial Differential Equations

3 credits. Prerequisite: Ma 113

Ma 326 Linear Algebra
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 336</td>
<td>Statistics</td>
<td>3</td>
<td>Ma 223</td>
</tr>
<tr>
<td>Ma 337</td>
<td>Operations Research</td>
<td>3</td>
<td>Ma 223, Ma 224</td>
</tr>
<tr>
<td></td>
<td>Linear programming, simplex method, graphs and network theory, dynamic programming, game theory, queues, variational techniques, duality, Markov chains, Monte Carlo simulation, decision theory. Special topics depending on student interest, possibly including language questions, integer programming, nonlinear programming and topics from mathematical biology, econometrics and other applications of mathematics to the sciences and social sciences.</td>
<td></td>
<td>3 credits. Prerequisite: Ma 224</td>
</tr>
<tr>
<td>Ma 341</td>
<td>Differential Geometry</td>
<td>3</td>
<td>Ma 223, Ma 224</td>
</tr>
<tr>
<td></td>
<td>Theory of curves and surfaces, curvature, torsion, mean and Gaussian curvatures length, area, geodesics, 1st and 2nd quadratic forms, conformal mapping, minimal surfaces, tensor formulation and applications.</td>
<td></td>
<td>3 credits. Prerequisites: Ma 223 and permission of instructor</td>
</tr>
<tr>
<td>Ma 344</td>
<td>Tensor Analysis</td>
<td>3</td>
<td>Ma 326</td>
</tr>
<tr>
<td></td>
<td>Tensor algebra, covariant and contravariant tensors, metric tensors, Christoffel symbols and applications.</td>
<td></td>
<td>3 credits. Prerequisite: Ma 326</td>
</tr>
<tr>
<td>Ma 345</td>
<td>Functions of a Complex Variable</td>
<td>3</td>
<td>Ma 326</td>
</tr>
<tr>
<td></td>
<td>Topological properties of complex plane, complex analytic functions, Cauchy-Riemann equations, line integrals, Cauchy’s integral theorem and formula. Taylor series, uniform convergence, residues, analytic continuation, conformal mappings and applications.</td>
<td></td>
<td>3 credits. Prerequisite: Ma 223</td>
</tr>
<tr>
<td>Ma 347</td>
<td>Modern Algebra</td>
<td>3</td>
<td>Ma 326, Ma 224</td>
</tr>
<tr>
<td></td>
<td>Sets and mappings, the integers: well ordering, induction residue class arithmetic, Euler-Fermat theorems. Permutation groups: cyclic decompositions, transpositions, conjugate classes of permutations. Abstract groups: morphisms, subgroups, cyclic groups, coset decompositions. Factor and isomorphism theorems. Direct products of groups. Sylow’s theorems.</td>
<td></td>
<td>3 credits. Prerequisite: Ma 326</td>
</tr>
<tr>
<td>Ma 350</td>
<td>Advanced Calculus I</td>
<td>4</td>
<td>Ma 223</td>
</tr>
<tr>
<td></td>
<td>Sets and functions, topological properties of real line, continuity and uniform continuity, differentiability, mean value theorems, the Riemann-Stieltjes integral and Taylor’s theorem.</td>
<td></td>
<td>4 credits. Prerequisite: Ma 223</td>
</tr>
<tr>
<td>Ma 351</td>
<td>Advanced Calculus II</td>
<td>4</td>
<td>Ma 223</td>
</tr>
<tr>
<td></td>
<td>Uniform convergence. Differentiation of transformations, inverse and implicit function theorems. Applications to geometry and analysis.</td>
<td></td>
<td>4 credits. Prerequisite: Ma 350</td>
</tr>
<tr>
<td>Ma 352</td>
<td>Discrete Mathematics</td>
<td>3</td>
<td>Ma 110</td>
</tr>
<tr>
<td>Ma 370</td>
<td>Selected Topics in Mathematics</td>
<td>3</td>
<td>Ma 223, Ma 224</td>
</tr>
<tr>
<td></td>
<td>This is a seminar course involving discussion of topics in pure or applied mathematics that will be chosen by mutual agreement between the students and the instructor. Students will work independently on projects that may be of special interest to them.</td>
<td></td>
<td>3 credits. Prerequisites: Ma 223, Ma 240</td>
</tr>
<tr>
<td>Ma 381</td>
<td>Seminar</td>
<td>3</td>
<td>Ma 223</td>
</tr>
<tr>
<td></td>
<td>Individual investigation of selected topics in pure or applied mathematics, centered on a subject to be agreed on between students and the faculty leader. Emphasis will be on training in independent reading of mathematical literature, oral presentations and group discussions of the theory and problems. Credits and class hours to be determined by faculty on individual basis.</td>
<td></td>
<td>3 credits. Prerequisite: Ma 223</td>
</tr>
<tr>
<td>Ma 382</td>
<td>Seminar</td>
<td>3</td>
<td>Ma 381</td>
</tr>
<tr>
<td></td>
<td>Continuation of Ma 381. Credits to be determined by faculty on individual basis.</td>
<td></td>
<td>3 credits. Prerequisite: Ma 381</td>
</tr>
<tr>
<td>Ma 391</td>
<td>Research Problem 1</td>
<td>4</td>
<td>Ma 240</td>
</tr>
<tr>
<td></td>
<td>An elective course available to qualified upper division students. Students may approach a faculty member and apply to carry out independent research on problems of mutual interest in pure or applied mathematics. Each student is encouraged to do independent creative work with faculty guidance.</td>
<td></td>
<td>4 credits. Prerequisite: Ma 240 and permission of research advisor</td>
</tr>
<tr>
<td>Ma 392</td>
<td>Research Problem 2</td>
<td>3</td>
<td>Ma 391</td>
</tr>
<tr>
<td></td>
<td>Continuation of Ma 391. This is intended to allow students to continue ongoing research.</td>
<td></td>
<td>3 credits. Prerequisite: Ma 391 and permission of research advisor</td>
</tr>
<tr>
<td>Grad.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 401</td>
<td>Boundary Value Problems</td>
<td>4</td>
<td>Ma 223, Ma 240</td>
</tr>
<tr>
<td></td>
<td>Orthogonal polynomials, Fourier series; properties of Legendre polynomials and Bessel functions. Applications to the wave equation and the differential equations of heat transfer in several dimensions.</td>
<td></td>
<td>4 credits. Prerequisites: Ma 223, Ma 240</td>
</tr>
<tr>
<td>Ma 402</td>
<td>Numerical Analysis</td>
<td>3</td>
<td>Ma 223, Ma 240</td>
</tr>
<tr>
<td></td>
<td>Techniques for the solutions of ordinary and partial differential equations, the classical problems of linear algebra, integration and systems of linear equations, Error analysis, convergence and stability theory. Course assignments will include use of computing facilities.</td>
<td></td>
<td>3 credits. Prerequisites: Ma 223, Ma 240</td>
</tr>
<tr>
<td>Ma 403</td>
<td>Special Topics in Applied Mathematics</td>
<td>3</td>
<td>Ma 223, Ma 240</td>
</tr>
<tr>
<td></td>
<td>Introduction to the general theory of partial differential equations; existence and uniqueness of solutions; integral equations; computational techniques using finite-element and probabilistic methods. Other current topics in engineering may be included also.</td>
<td></td>
<td>3 credits. Prerequisites: Ma 223, Ma 240</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Ma 415</td>
<td>Wavelets and Multiresolution Imaging (same as ECE 419)</td>
<td>3</td>
<td>Permission of instructors. Taught by the faculties of mathematics and electrical engineering</td>
</tr>
<tr>
<td>Ma 417</td>
<td>Mathematics of Medical Imaging</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
<tr>
<td>Ma 470</td>
<td>Selected advanced topics in Mathematics</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
<tr>
<td>Ph 112</td>
<td>Physics I: Mechanics</td>
<td>3</td>
<td>Ma 240, Ma 326, or permission of instructor</td>
</tr>
<tr>
<td>Ph 151</td>
<td>Optics: The Physical Basis of What Is Seen</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
<tr>
<td>Ph 165</td>
<td>Concepts of Physics I</td>
<td>2</td>
<td>Ma 160, CS 102; co-requisite: Ma 163. Cannot be used to satisfy any degree requirement in the School of Engineering.</td>
</tr>
<tr>
<td>Ph 166</td>
<td>Concepts of Physics II</td>
<td>2</td>
<td>Ma 164. Cannot be used to satisfy any degree requirement in the School of Engineering.</td>
</tr>
<tr>
<td>Ph 213</td>
<td>Physics II: Electromagnetic Phenomena</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
<tr>
<td>Ph 214</td>
<td>Physics III: Optics and Modern Physics</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
<tr>
<td>Ph 291</td>
<td>Introductory Physics Laboratory</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
<tr>
<td>Ph 327</td>
<td>Topics in Modern Physics</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
<tr>
<td>Ph 330</td>
<td>Introduction to Neurophysiology and the Biophysics of Neural Computation</td>
<td>3</td>
<td>Taught by the faculty.</td>
</tr>
</tbody>
</table>
Ph 328 Relativity and Electrodynamics Introduction to tensors; formulation of electromagnetic theory. Special and general theories of relativity. Topics include space-time transformations, electromagnetic stress-energy-momentum tensor, four-space curvature and gravitational field equations, description of basic experiments, gravitational waves, cosmological models. 3 credits. Prerequisite: Ph 214

Ph 360 Special Projects in Physics Special projects in experimental or theoretical physics. Credits and prerequisites determined in each case by the physics faculty.

Ph 370 Introduction to Astronomy and Astrophysics A quantitative introduction to Astronomy and Astrophysics. Topics include: Introduction to observational Astrophysics. The Sun, "normal stars" and interacting binaries. Stellar evolution and energy generation. Supernovae, pulsars, white dwarfs, neutron stars, black holes. Star clusters. Galaxies, and interstellar medium, galaxy clusters. Quasars and Active Galactic Nuclei. Cosmology. Prior knowledge of astronomy not necessary. 3 credits. Prerequisites: permission of instructor, Ph 214, Ma 240

Graduate

Ph 429 Deterministic Chaos with Engineering Applications A simple mathematical formalism explains how a nonlinear system with no random element may be intrinsically unpredictable even when its governing equations are known. The mathematics of chaos (including fractals) will be presented, with applications drawn from mechanical, biological, chemical processes; the weather; electric circuits; lasers; general relativity; models of war; the economy; the spread of epidemics, etc. 3 credits. Prerequisites: Ph 214, Ma 103 (Ma 240 preferred) and CS 102

Ph 462 Nuclear Physics Historical introduction, relativity kinematics, basic nuclear properties, nuclear chain reactions, phenomenological nuclear models (shell, liquid drop and collective), equation of state (with computer exercises), an overview of particle physics, quantum chromodynamics, standard model, current research topics (neutron stars, big-bang nucleosynthesis, heavy-ion collider experiments) 3 credits. Prerequisites: permission of instructor, Ph 214, Ma 240
The Cooper Union is committed to the principle that an education in the liberal arts provides the ethical, social and humanistic framework crucial to personal development and professional excellence. Through their work in the humanities and social sciences, students gain a deeper awareness of the world in which they must live and act. They learn to think, write and speak clearly and effectively. Most significantly, an education in the liberal arts offers students the opportunity to become attentive to the social and humanistic implications of their professional work and to acquire the basis for a satisfying cultural and intellectual life.

Curriculum

All students take a four-semester core curriculum of required courses in the humanities and social sciences. In addition, students in the School of Art take a three-semester sequence in art history. The core curriculum is a prerequisite to all elective offerings in Humanities and Social Sciences. During the third and fourth years, students have considerable latitude to explore the humanities and social sciences through elective courses. All students are expected to take core curriculum courses at The Cooper Union.

Transfer Credit

Transfer credits may be granted for courses with a grade of B or better upon review by the office of the dean of Humanities and Social Sciences to determine that the work accomplished meets the Faculty’s requirements. Students may be required to provide evidence of work completed in the course: syllabi, papers, etc. In rare circumstances, the freshman and sophomore requirements may be waived if an equivalent course of study has been satisfactorily completed elsewhere. Eligible credits should be transferred during a student’s first semester at Cooper Union. Interested students should make an appointment with the dean or the academic adviser of the Faculty of Humanities and Social Sciences during the first week of classes in the fall semester.

Independent Study

Only juniors and seniors in good academic standing are eligible for independent study. Independent study may be taken for a maximum of three credits per semester. The student must obtain permission of both the instructor and the dean of the Faculty of Humanities and Social Sciences. The major consideration in approving proposals for independent study is the educational value of the study project within the structure of the degree requirements. The Faculty of Humanities and Social Sciences insists on very high standards as a condition for approving any independent study project.

Minor

Students who complete a minimum of 15 upper-division credits in a specific field of liberal arts qualify for a minor in that field of Humanities and Social Sciences. Minors are offered and will be designated on student transcripts in the following fields: American studies, art history, literature and history and society. Additional information is available from the office of the dean of Humanities and Social Sciences.

Academic Regulations

Credits

Unless otherwise noted, courses with the prefixes HSS, H and S carry three credits and courses with the prefix HTA carry two credits.

Prerequisites

The prerequisites for all courses with the prefixes H and S are HSS1, 2, 3 and 4. HTA 1, 2 and 3 are prerequisites for HTA electives. Exceptions may be granted by special permission of the dean.

Grades

At the end of every semester, each student receives a grade for his or her semester’s work in each subject. Grades, with their official significance, are as follows:

- **A** Outstanding performance
- **B** Very good performance
- **C** Average performance
- **D** Passing but unsatisfactory
- **F** Failure to meet minimum requirements
- **I** Work of the course not completed and assignment of grade and credit postponed. This designation will be given only in cases of illness (confirmed by authorized physician’s letter) or of other documented extraordinary circumstances beyond the student’s control, and only with the approval of the dean of the Faculty of Humanities and Social Sciences. The deadline for removal of an I designation will be determined by the instructor, but will not be later than six weeks after the start of the spring semester for students who receive such a grade in the fall semester and not later than two weeks after the end of the fall semester.
after the start of the fall semester for students who receive such a grade in the spring semester. If the I is not removed within the set time limit, either by completing the work in the subject or by passing a reexamination, the I will automatically become an F unless the dean of the Faculty of Humanities and Social Sciences extends the time or the student withdraws from school.

W Withdrawal (see below)

WU Unauthorized withdrawal (see below)

Indicators of plus (+) and minus (-) are used with the grades A, B, C and D. (The grade of A+ is, however, not given.) These indicators are included in computing grade point averages.

Dropped Courses and Withdrawals Courses dropped during the first and second week of the semester will not be entered in the transcript.

Dropping courses in Weeks 3-8: A student anticipating inability to continue a course should immediately seek advice. It is the responsibility of the student to notify the instructor and to file an official drop form by the end of the eighth week of the semester in order to receive a W grade. The grade W is not included in the calculation of the student's semester rating.

Dropping courses after Week 8: It is the policy of the Faculty not to approve any withdrawal after the eighth week of classes except under extreme, extenuating circumstances. If a student has stopped attending the class without consultation with the instructor and filing an official drop form, a WU will appear as the grade for the course. However, if the student is failing the course at the time of the unauthorized withdrawal, the instructor is free to record an F grade.

Assignments Students are required to complete all assignments and examinations on time. In the case of schedule conflict or an unavoidable delay in completing an assignment, the student should discuss the problem with his or her instructor. Failure to complete assignments on time may result in an F grade for the course.

Attendance Students are expected to attend all classes. No more than two unexcused absences will be permitted during any given semester. In the case of an unavoidable absence, the student should contact the instructor in advance. Students who are absent three or more times may receive a reduction of the final grade or, at the discretion of the instructor, be asked to withdraw from the course.

Lateness Students are expected to be punctual. Late students may be refused entry to a class. Chronic, unexcused lateness may result in a reduction of the final grade or in failure.

Academic Integrity The Faculty of Humanities and Social Sciences expects all students to demonstrate the highest levels of academic integrity. Violations of academic integrity have consequences, including, but not limited to, failure for the course. Further information concerning the policy on academic integrity is available from the dean's office.

Student Behavior Students are expected to conduct themselves in accordance with the guidelines in "A Code of Fair Practice" (pp. 19–23 of this catalog).

Academic Advising and Support

Academic Advising In addition to the dean, an academic adviser is available in the office of Humanities and Social Sciences for consultation by students in all three schools. Students are also encouraged to seek the advice of individual faculty members about general curricular and scholarly matters. A course instructor may not sign add/drop forms, determine transfer or AP credits or pre-approve courses to be taken elsewhere. Such questions must be referred to the dean's office.

The Center for Writing and Language Arts (CWLA) Writing and communication of ideas is central to an education in the liberal arts. All humanities, social sciences and art history courses include a substantial writing requirement and additional requirements for presentations. The Center for Writing and Language Arts (CWLA) offers feedback, support and instruction in all areas of written and spoken communication. The CWLA is staffed by experienced teachers, writers and editors, most with advanced graduate degrees. The Center offers one-on-one and small group sessions; students may sign up for single appointments as needed or may enroll for regularly scheduled ongoing sessions. CWLA associates provide feedback, work with students on issues of structure and argument and help all writers—regardless of level—to engage with their work more effectively. The CWLA also offers special support for non-native English speakers, students with learning difficulties and students without a strong background in writing, as well as intensive support for students working on Fulbright and other grants. The CWLA is also the home base of Cooper Union's foreign language program.
Courses

Courses in the Humanities, Social Sciences, Art History and Foreign Languages
Prior to registration each semester, students should consult the latest announcement of scheduled courses in the humanities, social sciences, art history and foreign languages. Some courses listed below may not be offered every year and new courses may be added each semester.

Core Curriculum

HSS 1 Literary Forms and Expressions A literature course concentrating on poetry and drama. Selected texts from antiquity and the Renaissance are common to all sections, with works from other genres, periods and cultures, chosen by individual instructors. The course develops aesthetic appreciation of literary texts and encourages a range of critical responses. Through close reading and extended discussion, students learn to articulate their responses in written and spoken form.
3 credits

HSS 2 Texts and Contexts: Old Worlds and New A study of texts and topics from 1500 to 1800, with emphasis on literary expression and cultural context. Topics include the formation of states, exploration, the encounter with the New World, the crises in religious orthodoxy, the origins of modern science and the beginnings of political and economic individualism. This semester develops both cultural and political understanding through close reading, class discussion and careful writing.
3 credits

HSS 3 The Making of Modern Society A study of the key political, social and intellectual developments of modern Europe in global context. This course is organized chronologically, beginning with the Industrial and French Revolutions. Students develop an understanding of the political grammar and material bases of the present day by exploring the social origins of conservatism, liberalism, feminism, imperialism and totalitarianism. In discussions and in lectures students learn to study and to respond critically in written and spoken form to a variety of historical documents and secondary texts.
3 credits

HSS 4 The Modern Context: Figures and Topics A study of an important figure or topic from the modern period whose influence extends into contemporary culture. The figures and subjects are chosen from a broad range of disciplines (including literature, history, politics, technology and art history, among others). Through concentration on a single figure or focused topic students are encouraged to develop a deep awareness of works of great significance and to understand them in the context of modernity. Guided independent writing projects and oral presentations give students an appreciation for what constitutes research in the humanities and social sciences.
3 credits

HSS4 may be repeated for Free Elective credit in the School of Art and Engineering. HSS4 may be repeated for Elective credit in the School of Architecture. Provided the minimum requirement of six Elective credits in Humanities and Social Sciences is fulfilled by elective-level courses. In both cases, permission of the dean of Humanities and Social Sciences is required.

Note: The Center for Writing and Language Arts offers targeted support for HSS Core courses. Associates are available to work on all aspects of essay writing, including close reading, analysis, development of ideas, planning and structure, writing in stages, arguments and conclusions and revision. Associates are also available to help students prepare for presentations and public speaking in the HSS Core. CWLA associates can help you to organize your thinking, to challenge yourself and to create better, more engaged, more interesting work through focused discussion and targeted writing work. Students from all writing backgrounds are encouraged to make appointments in advance. Students working on specific written or spoken communication issues (ESL, learning differences, writing skills difficulties) are strongly encouraged to enroll in ongoing sessions early in the semester.

Elective Courses

Humanities

The Faculty of Humanities and Social Sciences offers a varied and flexible elective program that provides rigorous study while responding to the changing needs of students.

H105 Fundamentals of Music
A study of the elements and forms of music and consideration of how they define the stylistic characteristics of the literature of music from the late Renaissance to the present. There will be extensive use of recordings, as well as attendance at concerts and recitals.
3 credits

H107 Creative Writing
Starting with exercises and word games, then moving to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H129 Environmental Literature
In this class, we will look at ways of imagining and approaching the natural environment through writing, ranging from travelogue to activism. Readings will include essays, poetry and fiction by Wordsworth, Thoreau, Carson, Abbey and others. Topics for reading and writing will center on such issues as encounters with nature, sustainability, species extinction and global warming.
3 credits

H207 Music Cultures of the World
Examines music from a variety of musical cultures around the world, from Native American to Indonesian Gamelan music, including ethnic musical events in New York City. 2 credits

H306 Native America
An examination of Native American world views against a background of history. The stress will be on written literary texts drawn from oral cultures, including collections of traditional songs and stories, as well as contemporary writers. In addition, we will watch videos and listen to music.
3 credits

H307 Playwriting and Theater Practicum
This course will introduce students to two disciplines essential to creating theater: acting and playwriting. To help guide the beginning of their practice in these disciplines, students will read and critique contemporary and master works, write plays of their own, perform monologues and scenes written by master playwrights and bring the work of their peers alive through in-class readings and a final staged reading performance open to the Cooper Union community.
3 credits

H316 United States Cultural History
This course traces the development over time of “America” as place, idea, nation and culture. It is concerned with tracing the emergence and contours of a widely-shared, if indeterminate and contested, sense of American identity and culture by studying several enduring forces and themes in its formation. These include the encounters of Europeans and Indians, the institution of slavery, the West in myth and reality, modernization and metropolitan life and the United States in global culture.
3 credits

H319 Russian Art, Architecture and Literature
Survey of Russian arts from 1703, the founding of St. Petersburg, to 1924, the death of Lenin. This course is a study of the history and ideology underlying the remarkable literary and artistic achievement of Russia and, in its early phase, the Soviet Union.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H320 The Art of the Essay
A study of the essay as a literary genre. This course will focus on a single essay of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
3 credits

H321 The Novel
A study of the novel as a literary form. Starting with Defoe, Fielding and Sterne, the course will focus on a single novel of the 18th century, and then move to, e.g., the objective poem, collage and concrete poetry, metrics, translations. As well as writing, students are expected to read widely in poetry and fiction. Attendance at a poetry or prose reading is obligatory. Grade based on class performance and portfolio of work.
H323 Presence of Poetry This will be a class in which the center of attention is the poem itself. We will concentrate on modern English and American poetry. The common text will be *The Norton Anthology of Modern Poetry*, 2nd edition, edited by Richard Ellman and Robert O’Clair (Norton, 1998), but students are encouraged to look into other anthologies and into such studies as those of William Empson in *Seven Types of Ambiguity* and Martin Heidegger in *Poetry, Language, Thought*. 3 credits.

H331 Eros in Antiquity Focuses on love in the ancient world, from Egypt through late Roman/early Christian times, with the major emphasis on Greece. Readings drawn from Sappho, Aristophanes, Plato and Ovid explore the range of ancient attitudes toward marriage, heterosexual love and homosexuality, fidelity and infidelity, the body and the mind and the roles of the sexes in various kinds of erotic relationships. 3 credits.

H332 The Personal Essay In this course we will study and discuss essays in Philip Lopate, ed., *The Art of the Personal Essay*, and we will also write our own, on any topics we choose, on all manner of subjects—the daily round, pleasures and pains, taking a walk, solitude, friendship, in short, our personal responses to any number of objects and situations, multiplying ourselves in the process. 3 credits

H335 Issues in Contemporary Fiction Study of literary topics including particular genres, themes, sensibilities and critical approaches. The focus of this course will change in individual semesters. 3 credits

H358 Studies in Cinema Focus on a special topic in the study of cinema. The seminar may be repeated for credit with the permission of the dean of the Faculty of Humanities and Social Sciences. 3 credits
H369 History of the Book
An introduction to the creation, use and meaning of “the book” over its long history from the clay tablet to the digital download. Readings and discussions will bring together literary and cultural history, as well as aspects of politics, art history and the history of technology. Topics will include the moves from oral cultures to written, and from the scroll to the codex, and from public reading to reading as a private experience; the emergence of printers and publishers; the invention of the library; censorship and the spread of reading publics; the rise of the novel and “popular reading”; the comic book; the paperback; and the movement through digital technologies to non-print books.
3 credits

H373 Seminar in Humanities
Seminar giving close attention to special topics in the humanities. The seminar may be repeated for credit with the permission of the dean of the Faculty of Humanities and Social Sciences.
3 credits

H374 Contemporary Culture and Criticism
A survey of the cultural climate since the 1960s, including the influence of works by such writers as Benjamin and Bakhtin and the concern with contemporary life in terms of fundamental shifts in community, representation, identity and power.
3 credits

H375 Critical Theory
This course begins with the post World War II generation of social thinkers and critics, such as Barthes, de Beauvoir, Foucault, Adorno, Horkeimer, Lacan, in the development of what later became known as the critical theory of culture. We then proceed to more recent critics, each time taking our clues from real life examples. This course emphasizing learning how to “see” and think in “cultural practices.” It offers a chance to have our understanding extended into everyday life and its ways of making us cultural beings.
3 credits

H377 General Linguistics
Survey of two major types of linguistic study: diachronic or historical linguistics and synchronic or structural linguistics. The course concludes with presentation of recent linguistic theory, with emphasis on cognitive grammar and biolinguistics.
3 credits

H379 Visual Culture
An historical account of the developing wealth and intensity of visual experience in the United States in the last century and study of the circulation of images as a cultural sign system shaping class, gender, race and sexual subjectivities.
3 credits

H381 Post-Colonial Studies
This course engages with the legacy of colonialism in literature and theory. Topics include the relationship between colonizer and colonized, independence, apartheid and immigration in novels from South Africa, the Caribbean and Africa. Works by Rudyard Kipling, E.M. Forster, Aime Cesaire, Salman Rushdie, Nadine Gordimer, Jhumpa Lahiri and Zadie Smith will be addressed.
3 credits

H382 African-American Literature
Under this rubric, courses may address a range of issues, periods, themes or questions in African-American literature. Specific topics and descriptions will be detailed in the relevant course bulletin each time the course is offered.
3 credits

H383 Opera
This course will examine the history, materials and structures of opera, a rich and complicated art that is both musical and theatrical. We will address such topics as the origins of opera in 17th-century Italy, the Baroque style, the art of bel canto, opera and politics, Wagner’s revolutionary ideas, realism and impressionism in music, experiments in tonality and opera in English. Several works will be considered in detail. Classes will combine lecture-discussion and screenings of performances on DVDs. An interest in music is essential, but no ability to read scores or play an instrument is required.
3 credits

H387 The Life and Death of Socrates
Socrates, the son of a humble stonemason, Sophroniskos, was one of the most remarkable, controversial and influential human beings who ever lived. Though he left behind no written testimonial of his peculiar, singular genius, we know quite a bit about him through the accounts and recollections of his contemporaries, critics and followers, primary among them, Plato, Xenophon and Aristophanes. Based almost exclusively on readings of the major ancient texts, the course focuses less on the philosophy of Socrates, as filtered through the great and not unbiassed lens of his most famous student, Plato, than on the man, his physical demeanor, his way of life, his loves, his friendships and especially his trial and death in 399 B.C.E.
3 credits

H388 Space and the Modern Novel
This course will focus on representations of space in the 20th-century novel. We will begin by considering topics such as the shift from Modernism to Postmodernism in literature, dynamics between public and private places, how cities are characterized and represented, the concept of “home,” and ideas of “safety.” Among the questions we will try to answer are: How do modernization, urbanization and industrialization affect the imagination and perception of space? How do characters inhabit their homes and their cities? What are the relationships between urban and domestic environments and how do human beings alter when they move between them? How do attempts to define “ordinary” experience address the ways we interact with the spaces in which we live? The course will be broken into three sections: the house, the city and the imaginary.
3 credits

H391 Landscapes in Mind
A study of the great landscapes, real and imaginary, of western art and literature. The course will consider landscape both as idea and as subject in art and literature from antiquity to the present. From the imaginary ekphrasises of Homer, Aeschylus, Euripides, Theocritus and Virgil to the idealized naturalism of the English Romantic poets; from the surprising remains of Greek and Roman wall painting, to the great masters of 17th-century Europe, the many and various genres of landscape will be examined.
3 credits

H424 Greek Mythology
The course will concentrate not just on the endlessly fascinating stories of the gods drawn from the classic sources, but on a critical analysis of the question: How do the gods fare throughout the course of western history? Periods to be focused on include the time of Homer, Hesiod and the Homeric Hymns; the Archaic period (the time of the Lyric poets); the high Classical period (the golden age of Greek tragedy); the late Classical and Hellenistic periods (the age of the great philosophers and their schools); the Augustan era of the Roman Empire (the time of Virgil and Ovid); and the Renaissance. 3 credits

H450 Shakespeare
A course devoted to understanding how the plays work, what characters say and do, the imagery and themes of Shakespeare’s dramas and the performance practices of the Elizabethan and Jacobean era. Also to be addressed is the cultural milieu of the plays—the historical, political and religious world they inhabit—in order to deepen our access to Shakespeare’s language and to hear it with both his ears and our own.
3 credits

H99 Independent Study (Humanities)
3 credits

Social Sciences

S308 Public Policy in Contemporary America
Issues such as conservation, environmental law and policy, mass transportation, transfer of development rights, incentive zoning and historic preservation, beginning with an introduction to and general analysis of the policy process. 3 credits

S318 Seminar in Social Science
Seminar giving close attention to special topics in the social sciences. The seminar may be repeated for credit with the permission of the dean of the Faculty of Humanities and Social Sciences.
3 credits
S320 Comparative Politics
Comparing political systems is at least as old as Aristotle, whose library contained more than 135 studies of constitutions of the ancient world. This course will compare contemporary political systems and consider some of the main challenges they face: forging a common identity and sense of community; meeting social and economic needs; and securing civil and political liberties and human rights. Recognizing that political societies of today’s worlds can differ dramatically, the course will begin by introducing concepts and approaches that make it possible to compare systems as different as those of China and Great Britain. In addition to the broader paradigms of system, structure and function, we will also consider forms of political culture and socialization, interest articulation and aggregation, party systems and policymaking. Several distinct systems will be studied; these will be chosen not only for their geographical, but also for their political diversity, representing first-world nations such as the United States, Britain and France, as well as post-communist and post-colonial states such as Russia, China and Nigeria.
3 credits

S321 The American Presidency
The nature and sources of the power of the American presidency, the ways in which it is wielded and the Constitutional restraints upon its exercise.
3 credits

S322 Politics and Collective Memory
The political uses of collective memory can range from defining national and social identities to shaping public opinion. In exploring the interactions between memory and politics, this course will focus on the nature and forms of collective memory, its development and reconstruction and its relationship to structures of authority. Emphasis will be placed on examples from recent political history.
3 credits

S323 Politics of Ethnonational Conflict
An examination of the movements for national liberation and independence that have become an increasingly important phenomenon in the second half of the 20th century. Among the movements considered are those of Algeria, Nigeria, Cyprus, Bangladesh, Northern Ireland, Quebec, Lebanon and the PLO.
3 credits

S324 Microeconomics
The relationship between economic theory and public policy, focusing on the central axioms of modern economics in the light of recent problems in energy employment and inflation.
3 credits

S325 Science and Technology in the Long 18th Century (1687-1839)
This course will examine the changing roles of science and technology in the West during the 18th and early 19th centuries. We will use a case-study approach to consider such topics as color in theories (light and optics) and color in practice (painting, dyeing and glassmaking); geology mineralogy and the development of ceramic industries in Europe; the invention, use (and misuse) of the natural classifications; and automation and automatons: Vaucanson’s duck, Jacquard’s loom, Babbage’s Difference Engine.
3 credits

S327 American Foreign Policy
In the 20th century, challenges to Western liberalism came from fascism and communism, while more recent challenges have come from terrorist movements on the one hand and the European Union on the other. This course examines American foreign policy since the collapse of communism in the context of these changing challenges.
3 credits

S328 Anthropology of Ritual
The study of ritual takes us to the heart of anthropological approaches to experience, performance, symbolism and association. Thought to be “vestigal” organs of archaic societies, rituals are now seen as arenas through which social change may emerge and be recognized to be present in all societies. Throughout the course we will explore varying definitions of ritual and its universal and particular aspects, while surveying ethnographic case studies from around the world.
3 credits

S345 The Raymond G. Brown Seminar
A seminar in the social sciences on a topic central to the interests of the late Professor Raymond G. Brown.
3 credits

S346 Urban Sociology: Reading the City
Focuses on the relationship between the built environment and human behavior, the design of public, urban spaces as a reflection of and impetus for certain types of human interactions and reactions. Another interest of the course will be to consider the notion of community as it plays out in the disciplines of sociology and architecture—how they intersect, and how they are changing in our post-modern, post-industrial terrain. Some of the broad areas of interest of urban sociologists will also be considered.
3 credits

S347 Macroeconomics
The development of modern macroeconomic theory as it evolves in response to a succession of economic problems and crises. Emphasis on the recent Keynesian/monetarist debates and the role of the Federal Reserve Bank.
3 credits

S348 Global Cities
Considers specific and general factors that contribute to the rise of global cities—New York, London, Tokyo—and how such cities impact other city-types, existing and emerging. This course examines the forces underlying globalization, including the shift from industrial to informational economies, the development of new technologies and the emergence of new patterns of immigration, in order to understand the complexities of global processes in urban terrains.
3 credits

S350 History of Science in the 18th Century
A study of the dramatic ruptures of Europe’s 20th century, haunted by imperialism, war and genocide. Topics include the First World War; modernity and modernism in interwar culture; fascism, National Socialism and the Holocaust; postwar displacements and migrations; decolonization, the cold war and the postwar economic miracle; 1968 and 1989 in both East and West; and the ongoing challenges of integration and multiculturalism.
3 credits

S354 New York, 1820-1920: An Urban and Cultural History
A presentation of two “maps” to the city. The first is a history of the built environment, focusing on the changing systems of transportation, the development of building forms and the way the city’s population and functions have been distributed in that space. The second historical map is made up from people’s imaginative responses to those changes, especially as seen in literature and visual iconography. Among the areas singled out for special examination are the Bowery and the Lower East Side, Central Park and the “downtown” of amusement and vice, wherever it happened to be at the time.
3 credits

S358 Social History of Food
A study of the transformations in food production and consumption, 1492 to the present. The course examines the passage of “new world” foods into Europe and Asia, the rise of commercial agriculture in the colonies, especially sugar, the rise of national cuisines, the advent of restaurant culture and the perils of fast and industrial food.
3 credits

S360 American Intellectual History
A study of major works in intellectual and literary history written from 1780 to the present, focusing on changing notions of the self, character and community and the ways these concepts have gained intellectual and literary expression in the United States.
3 credits

S361 Urban Archaeology
An introduction to the new field of urban archaeology. Topics include how archaeologists work in cities; the special problems and rewards of urban archaeology; and what can be learned about the development of particular cities through this field of study, including changes in subsistence patterns, the use of urban space and the definition of ethnicity and gender.
3 credits
S362 Popular Culture
This course studies popular culture in a primarily 20th-century context. Using both creative and theoretical texts, it considers developments in contemporary popular culture including the rise of mass media and consumerism, the elaboration of pop-cultural theory and the trend toward multiculturalism. We will sharpen our critical perspective on our cultural surroundings by questioning boundaries between the popular and other cultural categories, notions of creativity in the high and popular arts and the bases of our own preferences. 3 credits

S367 Acting Globally
This course introduces students to the developments sometimes called the post-postmodern era of globalization, with a particular focus on the study of cultural impact. Our approach will entail both the macro level discussion of conditions and possibilities for affecting a decent global future and the micro level of actual sites of responses to (1) technology transfer; (2) cultural preservation, resistance, modernization and integration; and (3) the new dialogues around ecological sustainability. We study analytical texts, autobiographies, films and proposals on how to humanize the New World Order. 3 credits

S368 History of Modern Asia
This course seeks to explore the history of Asia from the late imperial eras of China, Japan, Korea and Southeast Asia into the modern era. The course examines a wide variety of political, social, economic and cultural issues that predominated during this period. While emphasizing the distinctive nature of the region, the course will stress the wide diversity and interconnectedness of ideas, technologies and religions of modern East Asia. 3 credits

S369 Psychoanalytic Theory
An introduction to psychoanalytic thinking and theory making, with special attention paid to the ways in which different theorists conceptualize and invoke psychoanalysis as a theory of mind, research tool, therapeutic process and utopian vision. Readings include foundational texts by Freud, Ferenczi and Klein, as well as responses to classical theory by Horney, Winnicott, Lacan and others. 3 credits

S371 Women and Men: Power and Politics
An introduction to women’s and gender studies, and to feminist theory. Students will examine the ways and the historical basis for construction of gender and the interlocking of gender with other forms of hierarchy, including race, ethnicity, class and sexuality. Readings include classic texts and current scholarship in literature, film, history and social science. 3 credits

S372 Global Issues
This course will examine current issues of global significance and their implications for policy and decision-making. Among the trends we will consider are the tensions between resource competition and authority; the emergence of a global economy; the environment and sustainable development; demographic change; and the emergence of new security issues, including societal and environmental stress. 3 credits

S373 Modernity and Modernism: Culture and Society in the Weimar Republic
This course explores the turbulent and innovative interwar years 1918-1933 in Weimar Germany, paying particular attention to cultural and social politics. We will study the difficult establishment of the “republic that nobody wanted” in the wake of a lost war, a collapsed empire and a failed revolution; the chaotic period of rebellion and inflation until 1922; the brief “Golden Twenties” of relative stabilization and Neue Sachlichkeit (New Sobriety) with its burst of social welfare initiatives, architectural and engineering innovations and efflorescence of art, music, theater and literature; and finally the crises of economic depression and political polarization that culminated with Adolf Hitler’s appointment as chancellor of Germany in January 1933. 3 credits

S374 Contemporary Social Psychology
Utilizing a variety of social psychological perspectives, general issues such as human nature, socialization, attitude formation and change, verbal and non-verbal language, interpersonal behavior and the art of persuasion will be explored with interest in cross-cultural comparisons. The core questions we will explore include: What does it mean to be human? How is the self defined and determined? What impact do social groups, culture and the (built) environment have on the development of the self and on our everyday behavior? 3 credits

S376 City and Urban Experience in Latin America
Surveys the history of urban settlement in Latin America, from the foundation of colonial fortresses and capitals to the emergence of the “megacity.” Through readings that approach Latin American cities such as Mexico City, São Paulo and Brasilia from a range of disciplinary perspectives students examine 1) the role of the city in empire; 2) the city as a crucible of colonial society; 3) the city and the mission of civilization; 4) the city as “the nation”; 5) the historical production of social, cultural and political spaces by architects, policy makers and city-dwellers; 6) the dilemmas of politics and governance that contemporary urban and suburban growth create; and 7) the emergence of “Latin American” cities in the United States. 3 credits

S377 Time, Travel and Communication in Early Modern Europe
This course is an exploration of early modern European technology with a strong focus on design technologies and material culture. It will cover the time period extending approximately from the Age of Exploration through the French Revolution (about 1500-1800). We will examine early modern ideas about three critical aspects of modern life: time, communication and travel. Interpretation of these themes will be broad and may include not only carriages and bridges but also carriage upholstery and passports; not only letters, newspapers and books but also songs and emblems; not only the shift from public to personal time but also calendar reform. In addition to readings (both primary and secondary) and discussions (in-class and online), students will choose to study three artifacts that are relevant to the themes of time, communication and travel, research them and present their findings to the class. 3 credits

S380 Game Theory
Since its introduction in 1943 by John von Neumann and Oskar Morgenstern, the general theory of games has been instrumental to our understanding of various social behaviors. With key contributions of such renowned scholars as John Nash, Robert Arrow, Thomas Schelling and John Harsanyi, among other Nobel Laureates, game theory has quickly gained a large following among students of economics, evolutionary biology and even political science. Though at times seemingly abstract, game theory has shown us that it has practical value with applications in firm-level management and strategic decisions making in military campaigns. The course has two dimensions: the first is to explore the theoretical basis of games, the second is to consider the application of these concepts in economics and political science. 3 credits

S384 Anthropology and the Other
This course provides an introduction to concepts in social-cultural anthropology. Students will rethink such concepts as culture, race, ethnicity, nationalism, transnationalism, gentrification, power and memory. We will use these concepts to address the questions of human universals and the origins of cultural differences. At the bases of these inquiries will be the question of the “Other.” Who are the “Others” in culture or society? 3 credits

S385 Science and Technology in the Modern World (1815 to the Present)
This course will explore the social intellectual and economic relationships of science and technology in the modern West (i.e., after 1815). Using modified case studies to provide “snapshots,” students will learn to recognize changes to such factors as who participates, where work is conducted and the supports (social, financial, emotional) necessary to individual and collective pursuits. 3 credits

S390 The Rise of the Modern City in the European Middle Ages
Explores how early medieval landscapes with castles and small villages became wider communities—the first modern cities. Focuses on major debates of the Middle Ages: the tensions between country and city life; the role of the church; Scholasticism; the debate between reason and faith; the role of the French cathedral in medieval life; the lay reaction to ecclesiastical control and the rise of communal Italian cities such as Florence, Venice and Siena centered around the civic palace; and the early requirements for city beautification. We will “visit” (virtually) the first hospital, universities and prototypical housing. Everyday life will be illustrated from the material remains of art and architecture through a cross section of different social environments. 3 credits
S391 Introduction to Mind and Brain
The goal of this is to introduce the student to the basic principles of psychology, to guide the student through the brain and to provide a basic understanding of the relationship between the brain and mind addressing issues of consciousness. The first third of the course will examine the brain and underlying theories in psychology. The majority of the course will be focused on the relationship between the brain and consciousness including self-awareness, theory of mind, deception, abstract reasoning, art, music, spatial abilities and language. Steeped in recent findings in both psychology and neuroscience, the goal of this class will be to provide a modern foundation in the mind and the brain.
3 credits

S420 Environmentalism in the Urban Context
The recent work of environmental activists and scholars has produced a new urbanism in which the city form and function is intimately connected with natural processes. This rethinking of the city has opened several new possibilities for looking at human-environment interactions. In particular, the everyday environment of the city may be examined as a site for identifying the hidden geographies of raw materials, energy and waste flows. This course looks at three central issues: (1) identification of the material and ecological processes that make possible city form and function possible; (2) interpretation of the city as a constellation of economic institutions and social practices that transform nature over different temporal and spatial scales; and (3) the examination of the environmental and health impacts stemming from a city’s role in production and consumption. Students will work on projects using the principles of ecological design in the redevelop-ment of urban sites.
3 credits

S99 Independent Study (Social Sciences)
3 credits

History and Theory of Art
While contributing to the required curriculum of students enrolled in the School of Art, courses in the History of Art are also available to students in the other schools.

All HTA courses are normally offered for two credits. In exceptional circumstances, students may petition to take an HTA course for an additional credit. The student must get permission from both the instructor and the dean of Humanities and Social Sciences.

Core Curriculum
HTA 1 Art History I: Origins to the Middle Ages
Study of artifacts, architecture and visual culture of ancient civilizations and their continuing significance. Topics include prehistory, ancient Near East, Egypt, Greece, Rome, India, China, pre-Columbian Americas, Islam, the Byzantine Empire and medieval Europe, with special attention given to cross-cultural relationships and affinities.
2 credits

HTA 2 Art History II: Renaissance to Revolution
Study of painting, sculpture and architecture produced from the 14th through the mid-19th centuries. Topics include Renaissance, Mannerism, Baroque, Rococo, Neoclassicism and Romanticism, with emphasis on the artist as creative genius and on the political and ideological climates in which works were commissioned, conceived and made.
2 credits

HTA 3 Art History III: Modern to Contemporary
Study of modern art through a survey of major movements from the mid-19th century on. Topics include Realism, Impressionism, Post-Impressionism, Expressionism, Cubism, Suprematism and Constructivism, Dada and Surrealism, abstract expressionism, pop art, minimalism, conceptualism and recent trends. With assigned readings and museum visits, the course leads students to engage critically with issues of modernism and modernity.
2 credits

Electives
HTA 209 Medieval Art and Architecture
Investigates the art, architecture and archaeology of medieval Europe from Constantine (fourth century) to approximately 1450, a period when different cultures clashed and mixed together to shape the eclectic Western medieval world that rose from Roman imperial ruins and ideals. This course will follow a chronological sequence, but use recent data from medieval excavations to challenge traditional art historical statements. Early Christian, Byzantine, Barbarian, Islamic, Romanesque and Gothic periods are examined.
2 credits

HTA 220 Japanese Art
A chronological survey of Japanese art from prehistoric times to the 17th century, examining the interaction of the uniquely Japanese aesthetic sensibility with arts and cultural traditions transmitted from the Asian mainland. Although the primary emphasis is on painting and sculpture, attention is also paid to architecture, gardens, pottery, lacquerware and woodblock prints. Museum visits are an integral part of the course.
2 credits

HTA 221 Buddhist Art in Asia
An examination of Buddhist art in India, Afghanistan, Nepal, Tibet, Central Asia, Sri Lanka, Southeast Asia, China, Japan and Korea in the most characteristic styles, in order to show how each culture received and interpreted the Buddhist Doctrines and way of life.
2 credits

HTA 222 Buddhist Art in Asia
A chronological survey of Chinese and Japanese painting and an exploration of the aesthetic and spiritual values that shaped the arts of the brush in the Far East.
2 credits

HTA 223 Rome, the Eternal City
The course focuses on how the city of Rome changes through time and the way its idea of eternity reflects on its culture and urban changes. Monumental Imperial Rome will be compared to the recent results from excavations and research of the poorly preserved archaic and Medieval Rome. Fifteenth-century Rome, with its powerful popes, initiated a radical urban transformation by attracting the best architects and artists for the next 300 years. With the monarchy of the end of the 19th century and then Mussolini, the city undergoes radical changes once again.
2 credits

HTA 231 History of Industrial Design
In tracing the history of industrial design from its emergence at the beginning of the Industrial Revolution to the present, this course will examine not only aesthetics (of furniture and the decorative arts, typography, advertising, machinery, toys, etc.) but also the social and political forces that have shaped the many styles. Throughout, we will also demonstrate how movements in industrial design relate to parallel developments in the history of painting, sculpture and architecture.
2 credits

HTA 240 Issues of Identity in Asian Contemporary Art
In this course, students will build a foundation in critical theory revolving around issues of race, nationality, sexuality and gender as they relate to the formation of an artist’s identity, and how that identity in turn is reflected in the artist’s output. Attention will be paid to Asian contemporary artists working outside of their own cultures and to Asian-American artists, in an attempt to analyze the role of the Asian diaspora and its connection to contemporary art production in Asia proper. Special focus will be paid to the contemporary art of India, China, Korea and Japan, although other nations and regions will also be discussed.
2 credits

HTA 261 The Bather in 19th-Century Painting and Sculpture
This course will examine the history of the bather, a sub-genre of that most “natural” of subjects, the nude, through the history of European art of the Renaissance through the early 20th-century. Emphasis will be placed on the 19th century. From the Realist nude of Courbet, Manet and Daumier, to the sun-dappled naiads of the Impressionists, to Cézanne’s and Seurat’s modern-day bathers pieced together from a flurry of brushstrokes, the image of the bather will serve over the course of the semester as a springboard from which to launch a discussion of modernism in the making.
2 credits

HTA 263 African Art
An introduction to the stylistic, conceptual, functional and historical aspects of sub-Saharan African sculpture and architecture, the place of these arts in the traditional context of black African life and their relationship to the worldview of the African.
2 credits
HTA 264 Black Artists of the Americas Studies the influence of African art and culture on black painters and sculptors in North and South America. Symbols, myths, religious rituals and deities will be explicated in terms of the correspondence they develop between distant antiquity and the present, allowing, in some cases, for new creative possibilities.
2 credits

HTA 265 American Art History This course studies art and visual culture made in North America, primarily after European contact. It will survey the visual expression of the colonial period, trace the 19th-century development of a self-consciously American art and include Native- and African-American work. It will consider 20th-century developments prior to World War II, such as early modernism, the social art movements of the 1930s and New York as a cosmopolitan art center.
2 credits

HTA 273 Topics in the History of Photography Writing by the critics, historians and photographers that have influenced creation and reception of photography throughout its history. Issues include definitions and redefinitions of art, documentary debates and revisionist canons and histories.
2 credits

HTA 274 History of Photography (1839-1965) A survey of the great artists and their work throughout the history of photography with emphasis on the images that were made. The importance of key images is discussed. This historical period was one of constant technical innovation and the class studies the effect this had on the work of the individual photographers.
2 credits

HTA 275, 276 Twentieth-Century Art History Considers the flourishing “isms” of the 20th century, as well as historical events, intellectual currents and conflicting aesthetic views, explored in relation to such enduring artists as Picasso, Matisse, Malevich, Kandinsky, Miro, Klee, Dubuffet, Giacometti, Pollock, Smith, Calder and others.
2 credits each semester

HTA 277 Contemporary Art Survey of the development of contemporary art after Minimalism and Pop Art of the 1960s. Chronological treatment includes canonical texts of critical theory and issues such as genre, multiculturism and site specificity crucial to the current practice of art.
2 credits

HTA 283 The “Genius” of the Baroque This course examines the genius of European Baroque art as distilled in the work of its greatest exemplars. We will also address the ideology of the counter-reformation church, the emergence of Protestant capitalism and a pluralist, bourgeois society in the north, patronage and social identity, propaganda, religious faith, skepticism, sexual identity and the family, all focused through the position of the artist in society. In no other period were body and spirit, sensual and sublime, so closely intermeshed. Art history resides precisely in the relation between our present interest in these artists and the past conditions in which they worked.
2 credits

HTA 296 Synaptesis A recurring seminar with a changing focus taught by Professor Dore Ashton.
2 credits

HTA 297 History of Printmaking Explores the history of printmaking and its various processes from the 15th century to the present with an eye to the unique contribution of this graphic art to the history of visual language in both popular and fine art. While major printmakers (e.g., Durer, Rembrandt, Daumier, the Nabis, the German Expressionists, Jasper Johns) will be addressed, attention will also be given to the practical and popular uses of prints through the centuries.
2 credits

HTA 298 History of Graphic Design A study of the history of graphic design work arising out of the important cultural, political and social configurations in Europe, Asia and the United States from the time of the industrial revolution to the present day. Points of reference include posters, publications and promotional pieces being drawn from an unusual collection.
2 credits

HTA 313 Seminar in Art History A seminar based on a special topic in the study of art history. The seminar may be repeated for credit with the permission of the dean of the Faculty of Humanities and Social Sciences.
2 credits

HTA 315 Mysteries of Northern Renaissance Art This course examines some of the most hauntingly beautiful and enigmatic works in the history of art, from a period of deep religiosity and aristocratic ideals, emerging contrary middle-class values and exceptional artistic ambition and self-consciousness. We will begin with a solution for the still unsolved riddle of the Ghent Altarpiece and the birth of modern painting in the north, move through debates about disguised symbolism and new conceptions of the artwork in Robert Campin and Rogier van der Weyden, the crisis of modernity in Hieronymus Bosch and the emergence of a new (sublime) order in the art of Pieter Bruegel, among others.
2 credits

HTA 317 Art and Architecture of Ancient Peru Introduction to the ancient cultures of Peru from about 3000 B.C.E. to the Spanish conquest, as seen in architecture, stone sculpture, ceramics, metalwork and textiles.
2 credits

HTA 318 Pre-Columbian Art and Architecture of Mesoamerica A survey of the arts and architecture of the pre-Columbian civilizations of Mexico and Central America from the earliest times through the Spanish conquest. Visits to museums and private collections are an integral part of the course.
2 credits

HTA 321 Art of Egypt A survey of the 3,000-year history of art, architecture and archaeology in the Nile Valley and the Sudan. Primary readings are used to supplement the visual record of life and art in the ancient world and the continual influence of Egypt in both high and popular culture.
2 credits

HTA 323, 333 Islamic Art and Architecture A chronological study of Islamic art and architecture, including an introduction to Islamic aesthetics, history and philosophy. The course will examine samples from religious and literary texts, architectural monuments, painting, ceramics, metal works and calligraphy from Spain, North Africa, the Levant, Iraq, Central Asia and India.
2 credits each semester

HTA 324 Arts of the Islamic Book This course looks at the elements that contributed to the evolution of Islamic book illustration from the 10th century to the 17th century, such as materials, styles, patronage, administration, choice of text and the relationship between text and image, with special concentration on the Persian book.
2 credits

HTA 327 The New York Art Collector This course investigates the history of art collecting as it unfolded in Manhattan and the surrounding boroughs. Beginning in colonial times with Governor Morris’ acquisition of 18th-century French furniture and ending in the mid-20th century with the formation of such public institutions as the Museum of Modern Art, the Whitney Museum of American Art and the Solomon R. Guggenheim Museum, the course will focus on both the men and women instrumental in the establishment of these collections and the specific objects they collected.
2 credits

HTA 328 Dada and Surrealism Since their appearance early in the 20th century, Dada and Surrealism have had a profound and lasting influence on the arts. This course explores the art and ideas of these two movements within the social, political, intellectual and art historical context of the years 1914-1947.
2 credits
HTA 329 Nineteenth-Century Printmaking
The 19th century witnessed an explosion of imagery, in part led by the technical developments in commercial printmaking and the advent of photography. This course will survey the major themes of the period, including the changing cityscape, the iconography of peasants and local landscapes, the influence of caricature and the popular press and the development of Japanism. Classes will be based on the hands-on viewing of original prints in the New York Public Library by artists including Eugene Delacroix, Edouard Manet, Charles Meryon, Camille Pissarro, Mary Cassatt and James McNeill Whistler. 2 credits

HTA 331 The Arts of China
This course is a chronological survey of the arts of China from the pottery-making and jade-carving cultures of the Neolithic up to contemporary works of art. A brief discussion of historical events as well as background in Chinese philosophy, political systems and religious practices will be presented in order to allow students to recontextualize selected works within their originating culture. The course is designed to provide students with a foundation in visual literacy of China, facilitate written expression and familiarize them with New York City’s cultural institutions exhibiting Chinese art. 2 credits

HTA 333 See HTA 323

HTA 334 Art and Architecture of Islamic India
A chronological study from the 6th century to the 19th century of the development of the art and architecture of the Mughals; and an examination of the Arab, Persian, Indian and European influences that shaped that culture. 2 credits

HTA 335 Art and Architecture of the Ancient Near East
More than 5,000 years ago, the earliest components of civilization, writing, law-giving and the city appeared as Mesopotamia, the fertile strip of land between the Tigris and the Euphrates, today called Iraq. The course will begin with an introductory history of Iraq, then it will focus on ancient Iraq and its interaction with surrounding regions in today’s Iran, Turkey and Syria. It will also consider contemporary civilizations in Egypt and the Indus Valley. Lectures will look at the geographical, economical, political and spiritual factors that led to the birth of this civilization, with its visual legacy of temples, tombs and palaces decorated with artworks of distinctive forms and styles. 2 credits

HTA 340 The Artist in Renaissance Italy
This course will focus on artists working in the Italian peninsula between ca 1400 and ca 1600, with the goal of learning how and why they created the paintings, tapestries, sculpture, prints and decorative art that we now think as “Renaissance.” In addition to studying materials, techniques and iconography, we shall consider the important role of patronage, both sacred and secular. 2 credits

HTA 400 Single Artist Seminar
A course devoted entirely to the life and work of one important artist, selected anew from across the spectrum of world art each time it is offered. The seminar is designed to allow for an in-depth experience in the discipline of art history that extends well beyond what is possible in period survey courses. 2 credits

HTA 99 Independent Study
(History/Theory of Art)
2 credits

Interdisciplinary Seminar
ID 441 Shifting Territories
An interdisciplinary seminar shared by the Faculty of Humanities and Social Sciences and the three schools. Each seminar is taught by a team of faculty representing at least two of the four divisions. The theme of the seminar will be announced in advance. 3 credits

Foreign Languages
All courses employ proficiency-based instruction utilizing audio-visual materials and native speakers.

All FL courses are two credits. Students interested in foreign language classes should contact the Center for Writing and Language Arts before registration. Prerequisite: Approval from the director of the Center for Writing and Language Arts.

In the School of Architecture, foreign language courses may be used for Elective credits, provided that at least six Elective credits are reserved for Humanities and Social Sciences courses.

In the School of Art, intermediate-level language study may fulfill General Studies requirements for the bachelor of fine arts degree. Advanced language courses may be used for Free Elective credit with the approval of the dean of the School of Art.

In the School of Engineering, foreign language courses do not satisfy Humanities/Social Sciences Elective requirements for bachelor of engineering degrees. Language courses may be used for non-technical Elective credit by mechanical engineering and electrical engineering students; for Free Elective credit by interdisciplinary engineering students and BSE students. Students in chemical engineering and civil engineering may not take language courses for credit.
Faculty

Administration
William Germano, Dean
Katherine Apolito
Administrative Associate
Gwen Hyman
Director, Center for Writing and Language Arts
Mary Steiber
Academic Adviser

Full-Time Faculty
Professors
Dore Ashton
Art History
B.A., University of Wisconsin; M.A., Harvard University; Ph.D., Moore College

William Germano
English Literature
B.A., Columbia University; Ph.D., Indiana University

Anne Griffin
Political Science
B.A., Wellesley College; M.A., Ph.D., New York University

Atina Grossmann
History
B.A., CUNY; Ph.D., Rutgers University

Fred Siegel
History
B.A., Rutgers University; M.A., Ph.D., University of Pittsburgh

Brian Swann
Humanities
B.A., M.A., Queens’ College, Cambridge University; Ph.D., Princeton University

David Weir
Comparative Literature
B.A., University of North Alabama; M.A., University of Alabama; Ph.D., New York University

Associate Professors
Peter Buckley
History
B.A., Sussex University; M.A., Ph.D., SUNY at Stony Brook

Sohnya Sayres
Humanities
B.A., M.A.H., Ph.D., SUNY at Buffalo

Mary Steiber
Art History
B.F.A., Carnegie Mellon; M.A., University of Pittsburgh; Ph.D., Princeton University

Proportional-Time Faculty
Gwen Hyman
Assistant Professor of Humanities
B.A., University of Toronto; M.A., M.Phil., Ph.D., Columbia University

Maren Stange
Associate Professor of Humanities
B.A., Radcliffe College; M.A., Tufts University; Ph.D., Boston University

Visiting Distinguished Professors
Visiting distinguished professors in the Faculty of Humanities and Social Sciences have included: Diane Ackerman, Stanley Aronowitz, David Garrow, David Harvey, Richard Howard, Tamar Jacoby, Floyd Lapp, W.S. Merwin, Dihong Mahon, Marie Ponsot, Hillard Pouncey, Jim Sleeper and Alan Trachtenberg

Adjunct Faculty
Hafizlum Abdullah
Instructor in Art History
B.F.A., University of Baghdad; M.A., M.F.A., City College of New York

Marek Bartelik
Associate Professor of Art History
M.S., Columbia University; Ph.D., CUNY Graduate Center

Michael Brent
Instructor in Humanities
B.A., M.A., University of California, Berkeley; Ph.D., Columbia University

Gail Buckland
Olympus Visiting Professor in the History of Photography
B.A., University of Rochester

Gerardo del Cerro Santamaría
Associate Professor of Social Sciences
M.A., Ph.D., New School for Social Research; B.A., Ph.D., Universidad Autonoma de Madrid; M.A., Royal Conservatory of Music, Madrid

Michael Dorsch
Assistant Professor of Art History
B.A., Swarthmore College; M.A., New York University

Kim Dramer
Assistant Professor of Art History
B.A., Boston University; M.A., Ph.D., Columbia University

Kate Hallgren
Instructor in Social Sciences
Ph.D. candidate, CUNY Graduate Center

James Hobberman
Professor of Cinema
B.A., SUNY at Binghamton; M.F.A., Columbia University

Julian Paul Keenan
Professor of Social Sciences
B.A., M.A., The College at New Paltz; Ph.D., The University at Albany

Chad Kia
Instructor in Humanities
B.A., University of Iowa; M.A., University of Texas; Ph.D. candidate, Columbia University

Heidi King
Instructor in Art History
B.A., University of Geneva; M.A., Columbia University

Sarah Lowengard
Assistant Professor of Social Sciences
A.B., Washington University; M.A., Ph.D., SUNY at Stony Brook

Gregory Lucas
Instructor in Social Sciences
A.B., University of Georgia; M.A., University of Chicago; Ph.D. candidate, CUNY Graduate Center

Jeff Madrick
Professor of Economics
B.S., New York University; M.B.A., Harvard University

Kevin McDonald
Assistant Professor of Social Sciences
B.A., University of Richmond, Virginia; M.A., Rutgers University; Ph.D., University of California, Santa Cruz

Victoria Mondelli
Instructor in Social Sciences
B.A., Hamilton College; M.A., Fordham University; Ph.D. candidate, CUNY Graduate Center

Christopher Nicholls
Instructor in Humanities
B.A., University of Michigan; M.A., New York University; Ph.D. candidate, New York University

Jason Lee Oakes
Assistant Professor of Humanities
B.A., Texas A&M University; M.A., Ph.D., Columbia University

Adrian O’Connor
Instructor in Social Sciences
B.A., University of Pennsylvania; Ph.D. candidate, University of Pennsylvania

Margaux Poueymirou
Instructor in Humanities
B.A., New York University; M.Litt. Ph.D. candidate, The University of St. Andrews
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Program</th>
<th>Degrees and Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tzarina T. Prater</td>
<td>Instructor in Humanities</td>
<td>B.A., University of Southern Maine; M.A., Rutgers University; Ph.D. candidate, Rutgers University</td>
</tr>
<tr>
<td>Harold Ramdass</td>
<td>Assistant Professor of Humanities</td>
<td>B.A., Baruch College; Ph.D., Princeton University</td>
</tr>
<tr>
<td>Cecilia I. Salvatierra</td>
<td>Instructor in Social Sciences</td>
<td>B.A., Hunter College; M.A., New York University; Ph.D. candidate, CUNY Graduate Center</td>
</tr>
<tr>
<td>John Sarich</td>
<td>Assistant Professor of Economics</td>
<td>B.A., University of Michigan; M.A., Ph.D., New School for Social Research</td>
</tr>
<tr>
<td>Gail Satter</td>
<td>Professor of Sociology</td>
<td>B.A., Stony Brook University; M.A., Queens College; Ph.D., CUNY Graduate Center</td>
</tr>
<tr>
<td>Martha Schulman</td>
<td>Instructor in Humanities</td>
<td>A.B., University of Chicago; M.F.A., Columbia University</td>
</tr>
<tr>
<td>Eric Shiner</td>
<td>Instructor in Art History</td>
<td>B.A., University of Pittsburgh; M.A., Osaka University; M.A., Yale University</td>
</tr>
<tr>
<td>Sandra Sider</td>
<td>Assistant Professor of Art History</td>
<td>B.A., M.A., Ph.D., University of North Carolina, Chapel Hill; M.L.S., Columbia University; M.A., New York University</td>
</tr>
<tr>
<td>Catherine Siemann</td>
<td>Instructor in English Literature</td>
<td>B.A., SUNY Binghamton; J.D., New York University; M.A., M.Phil., Columbia University; Ph.D., Columbia University</td>
</tr>
<tr>
<td>Stefanie Sobelle</td>
<td>Instructor in English Literature</td>
<td>B.A., Stanford University; M.A., M.Phil., Columbia University; Ph.D. candidate, Columbia University</td>
</tr>
<tr>
<td>Mary Taylor</td>
<td>Assistant Professor of Social Sciences</td>
<td>B.A., University of Southern Colorado; M.A., New School for Social Research; Ph.D., CUNY Graduate Center</td>
</tr>
<tr>
<td>Molly Tambor</td>
<td>Assistant Professor of History</td>
<td>B.A., M.A., Smith College; M.Phil., Ph.D., Columbia University</td>
</tr>
<tr>
<td>Ron Van Cleef</td>
<td>Instructor in Social Sciences</td>
<td>A.B., Syracuse University; M.A., CUNY Graduate Center; Ph.D. candidate, Stony Brook University</td>
</tr>
<tr>
<td>Deborah Waxenberg</td>
<td>Assistant Professor of Psychology</td>
<td>B.A., Hampshire College; Ph.D., CUNY Graduate Center</td>
</tr>
<tr>
<td>Andrew Weinstein</td>
<td>Assistant Professor of Art History</td>
<td>B.A., Brown University; M.A., University of Pennsylvania; M.A., New York University; Ph.D., New York University</td>
</tr>
<tr>
<td>Hannah Wells</td>
<td>Instructor in Humanities</td>
<td>B.A., University of Chicago; M.A., University of Pennsylvania; Ph.D. candidate, University of Pennsylvania</td>
</tr>
<tr>
<td>Jennifer Wilson</td>
<td>Assistant Professor of Social Sciences</td>
<td>B.S., University of British Columbia; M.S., Ph.D., Princeton University</td>
</tr>
<tr>
<td>James Wylie</td>
<td>Associate Professor of Humanities</td>
<td>B.A., Boston University</td>
</tr>
</tbody>
</table>

2008–2009 Course Catalog
Trustees, Officers, Deans
Administration, Emeriti

The listings in this catalog include faculty, administrative personnel and emeriti as of August 2008. Some faculty members’ educational backgrounds were not available at press time.

Trustees
Ronald W. Drucker CE’62, Chairman
Robert A. Bernhardt, Chair Emeritus
Marc Appleton
Robert Aquilina CE’78
Lawrence Benenson
Michael Borkowski ME’61
François deMenil AR’87
Mark Epstein A’76
Edward A. Feiner AR’69
Jeffrey Gural
Douglas A.P. Hamilton
Vikas Kapoor
Stanley N. Lapidus EE’70
Richard S. Liner
John Michaelson
Lawrence Ng EE’78
Bruce Pasternack ME’68
Sandra Priest Rose
William H. Sandholm CE’63
Richard Schwartz ME’57
Georgiana J. Slade
Philip Trahanas EE’92
Martin Trust ME’56
Roger C. Tucker III A’74
Cynthia Weier
Jason Wright
Ex Officio: Carmi Bee AR’67
Alumni Council President

Officers
George Campbell Jr., President
B.S., Drexel University
Ph.D., Syracuse University
Roni Denes, Vice President for External Affairs
B.A., American University
M.A., Columbia University
Robert E. Hawks, Vice President for Business Affairs and Treasurer
B.A., Syracuse University
M.P.A., Baruch College
M.A., Fordham University
Louise Baykash, Assistant Secretary

Deans
Saskia Bos, Dean of the School of Art
B.A., University of Groningen
M.A., University of Amsterdam
Sara Reisman, Associate Dean of the School of Art
B.A., University of Chicago; Whitney Museum Independent Study Program
Anthony Vidler, Dean of the Irwin S. Chanin School of Architecture
B.A. Hons., Dipl. Arch., Cambridge University;
Ph.D., Delft University of Technology (The Netherlands)
Elizabeth O’Donnell, Associate Dean of the Irwin S. Chanin School of Architecture
University of Minnesota; B.Arch., The Cooper Union, R.A.
Eleanor Baum, Dean of the Albert Nerken School of Engineering;
Professor of Electrical Engineering
B.E.E., City College of New York, CUNY;
M.E.E., Ph.D., Polytechnic University
Simon Ben-Avi, Associate Dean of the Albert Nerken School of Engineering;
Professor of Electrical Engineering
B.Sc., M.Sc., Ph.D., University of Manchester Institute of Science and Technology, England
William Germano, Dean of the Faculty of Humanities and Social Sciences;
Professor of English Literature
B.A., Columbia University;
Ph.D., Liodiana University
Mitchell L. Lipton, Dean of Admissions and Records
B.A., SUNY at Binghamton;
M.P.A., New York University
John Falls, Assistant Dean of Admissions
B.A., St. John’s University
M.A., Brooklyn College
Linda M. Lemieux, Dean of Students
B.A., Smith College;
M.A., M.Phil., Ph.D., Columbia University
Stephen P. Baker, Associate Dean of Students and Director of Recreation, Health and Safety
B.S., New York University
President’s Council
Joel R. Alper CE’58
J. Max Bond Jr., FAIA
Ivan Chermyeff
Henry N. Cobb, FAIA
Preston A. Davis
Susan Silver deMenil
Barbara Lee Diamonstein-Spelvogel
Elizabeth Diller AR’79
Robert F. Fox Jr.
Milton Glaser A’51
Alexander Gorlin AR’78
T.J. Gottesdiener AR’79
Benedict A. tri EE’75
Elliot S. Jaffe
Maurice Kanbar
Jay Krieger
Stanley N. Lapidus EE’70
Leon M. Lederman
Carol Sutton Lewis
Richard B. Lowe III
Edgar Mokvuo EE’78
Toshiko Mori, AIA AR’76
Jeanne Moutoussamy-Ashe A’75
Cynthia Hazen Polsky
Charles P. Reiss AR’65
Andrew Russell
Morley Safer
Sara Lee Schupf
Charles A. Shorter
Neal Slavin A’63
Martha Stewart
William L. Warren EE’50
William D. Zabel, Esq.

Administration
Lawrence Cacciatore
Director of Operations
B.A., M.A., New York University
Ellen Dorsey
Associate Registrar
B.A., Queens College, CUNY
M.S., City College of New York, CUNY
Gerald Feltner
Director of Institutional Giving
B.A., Queens College
Ph.D., Brown University
Laurent A. Fisher
Director of Major Gifts & Donor Relations
B.A., University of Denver
Ann Marie Gong
Director of Administration
B.A., School of Visual Arts
David Greenstein
Director of Continuing Education/Public Programs
B.A., Dartmouth College
M.A., Ph.D., Columbia University
Robert P. Hopkins
Director of the Computer Center;
Associate Professor of Computer Science
B.S., St. Joseph’s College, Indiana
M.B.A., Fordham University
Mindy Lang
Director, Center for Design and Typography
B.F.A., The Cooper Union
Claire McCarthy
Director of Public Affairs
Susan Moyle Lynch
Director of Alumni Relations
B.A., Russell Sage College
Ulla Volk
Head Librarian
M.L.S., Royal Danish Library School
M.I.L., University of Wisconsin-Madison
M.A., New York University
Mary Ruokonen
Director of Financial Aid
Jody Jeffery Grapes
Director of Facilities Management

Trustees Emeriti
Louis Dorfman A’39
Milton Glaser A’51
Alex Katz A’49
Clarence F. Michalis
Frank J. Wachtler
Carroll L. Wainwright, Jr.

*deceased
Faculty/Administration Emeriti

Richard L. Bory, Dean Emeritus of Admissions and Records
B.A., St. Bonaventure University; M.Div., Christ the King Seminary; M.S., Queens College, CUNY

Richard S. Bowman, B.A.
Professor Emeritus of Comparative Literature

Arthur Corwin, Professor Emeritus of Art
Ozenfant and Hans Hofmann, Schools of Fine Art; The Cooper Union; B.F.A., B.Arch., Yale University

Shang-I Cheng, B.S., M.S., Ph.D., P.E.
Professor Emeritus of Chemical Engineering

Wallace Chinitz, Professor Emeritus of Mechanical Engineering
B.M.E., City College of New York, M.M.E., Ph.D., Polytechnic University

Richard G. Costello, Professor Emeritus of Electrical Engineering
B.E., The Cooper Union M.S., Ph.D., Stevens Institute of Technology, PE.

Henry B. Hope, B.Ch.E., M.A., Ph.D.
Professor Emeritus of Chemical Engineering

Leo S. Kaplan
B.A., City College of New York, CUNY M.A., Columbia University

Ralph Knapp, B.E., M.S.
Professor Emeritus of Electrical Engineering

Edward Feiner (A’69), Alumni Trustee

Don Toman (EE’55), Past President

Marilyn Hoffner (A’48), Co-chair, Nominating Committee

Ronald Weinstein (CE’67), Co-chair, Nominating Committee

Kathryn McGraw Berry (AR’80), Chair, Annual Fund
The Cooper Union’s Vice president for business affairs/equal opportunity officer has overall responsibility for the management of the college’s Equal Opportunity and Nondiscrimination Policies and has been designated to coordinate compliance activities under these policies and applicable federal, state and local laws. Students, faculty and staff may contact the vice president for business affairs/equal opportunity officer, human resources manager, dean of students or their academic dean to inquire about their rights under the college’s policies, request counseling or seek information about filing a complaint.

Complaints by students against students are governed by the college’s Code of Fair Practice and Policies on Diversity and Sexual Harassment contained in the Campus Security and Safety Booklet. Complaints by students against faculty or other college employees are governed by the Equal Educational Opportunity and Student Nondiscrimination and Anti-Harassment Policies, which are printed in the Campus Security and Safety Booklet. The link to the booklet is available at: www.cooper.edu/admin.

Complaints by faculty and other employees are governed by the Equal Employment Opportunity and Nondiscrimination and Anti-Harassment Policies, published in the staff handbooks. Links to those policies are available at: www.cooper.edu/hr.

Faculty and bargaining unit staff may also refer to their collective bargaining agreements.

All students, faculty and other employees are protected from retaliation for filing a complaint or assisting in an investigation under the Nondiscrimination and Anti-Harassment Policies. The college’s policies apply to all students, faculty, other employees and applicants for admission and employment, and all such persons are protected from coercion, intimidation, interference or retaliation for filing an internal or external complaint of discrimination or harassment or assisting in an investigation under any of the above-named policies and applicable laws.

The Cooper Union is committed to providing a learning environment free from unlawful discrimination and harassment and to fostering a nurturing and vibrant community founded upon the fundamental dignity and worth of all of its members. Consistent with this commitment and with applicable laws, it is the policy of The Cooper Union not to tolerate unlawful discrimination or harassment in any form and to provide students who feel that they are victims of discrimination or harassment with mechanisms for seeking redress.

Continuing its long-standing policy to support actively equality of opportunity for all persons, The Cooper Union does not discriminate on the basis of age, race, religion, sex, color, sexual orientation, national and ethnic origin, nor does it discriminate against qualified handicapped or disabled persons or any other legally protected characteristic, in the administration of its admission and educational policies or scholarship, loan, athletic and other school-administered programs. Rather, The Cooper Union affirms that it admits students and employees regardless of their age, race, religion, sex, color, handicap or disability, sexual orientation, national, ethnic origin or any other legally protected characteristic and thereafter accords them all the rights and privileges generally made available to students at the school.

Consistent with The Cooper Union’s policy of supporting cultural diversity, no student shall be refused admission to or be expelled from The Cooper Union solely because he/she is unable to participate in any examination, study or work requirement due to his/her religious observances and practices. It is the intent of The Cooper Union to reasonably accommodate individual students’ religious obligations and practices without penalty, based on good faith, effort and due notice to those relevantly concerned of the anticipated religious observance date. There is the obligation of students to provide prior notice of anticipated absences. Students absent due to religious observances and practices will be given an opportunity to make up any examination, study or work requirement missed, without penalty.

The college also reasonably accommodates students with disabilities in accordance with law.

Discriminatory harassment and sexual harassment pose a direct threat to the right of every member of The Cooper Union community to be treated respectfully. Students, professors, staff and administrators share an obligation to maintain an environment in which members of the community are free to pursue and to promote learning, scholarly inquiry and artistic achievement without harassment. The harassment of any student is unacceptable and will not be tolerated at The Cooper Union.

Nothing in this policy shall abridge academic freedom or the college’s educational mission. Prohibitions against discrimination and harassment do not extend to statements or written materials that are germane to the classroom subject matter.

Definitions

For purposes of these policies and procedures, discrimination, discriminatory harassment and sexual harassment are defined as follows:

Discrimination

Discrimination is defined as:

• treating members of a protected class less favorably because of their membership in that class; or
• having a policy or practice that has a disproportionately adverse impact on protected class members.

“Protected class” refers to any personal trait or category that is protected by law, including an individual’s race, religion, sex, color, ethnicity, national origin, age, marital status, creed, genetic predisposition and carrier status, sexual orientation, alienage, citizenship status, veteran status, disability or any other characteristic protected by law.

Discriminatory Harassment

Discriminatory harassment is defined as substantially interfering with an individual’s educational or college living experience by subjecting him or her to severe or threatening conduct or to repeated humiliating or abusive conduct, based on his or her membership in a protected class. This includes sexual harassment, which is described below in further detail.

Under this policy, harassment is verbal or physical conduct that belittles or shows hostility or aversion toward an individual because of his or her race, religion, sex, color, ethnicity, national origin, age, marital status, creed, genetic predisposition and carrier status, sexual orientation,
involving sexual activity or language—
including through e-mail; and other
suggestive objects or pictures
obscene comments or gestures;
catcalls or touching; insulting or
about an individual’s body, sexual
abuse of a sexual nature; commentary
advances or requests for sexual favors;
not limited to: unwanted sexual
behaviors and may involve individuals
range of subtle and not so subtle
constitution when:
• such conduct has the purpose or
• submission to such conduct is made
• Has the purpose or effect of creating
• Has the purpose or effect of
reasonably interfering with an
individual’s academic performance;
or
• Otherwise adversely affects an indi-
vidual’s academic experience. Harassing conduct includes, but is not
limited to: epithets, slurs or negative
stereotyping; threatening, intimidating or hostile acts; and written or graphic
material that belittles or shows hostility or
aversion toward an individual or
group and that is placed on walls or
elsewhere on The Cooper Union
premises or circulated in the workplace
(including through e-mail).

SEXUAL HARASSMENT
Unwelcome sexual advances, requests for sexual favors and other verbal or
physical conduct of a sexual nature constitute sexual harassment when:
• submission to such conduct is made
either explicitly or implicitly a term or
condition of an individual’s education
or employment; or
• submission to or rejection of such
conduct by an individual is used
as the basis for academic or
employment decisions affecting
that individual; or
• such conduct has the purpose or
effect of unreasonably interfering
with an individual’s academic or
work performance or creating an
intimidating, hostile, demeaning
or offensive academic, work or
college living environment.
Sexual harassment may include a
range of subtle and not so subtle
behaviors and may involve individuals
of the same or different gender.
Depending on the circumstances,
these behaviors may include, but are
not limited to: unwanted sexual
advances or requests for sexual favors;
sexual jokes and innuendo; verbal
abuse of a sexual nature; commentary
about an individual’s body, sexual
prosper or sexual deficiencies; leering,
catcalling or touching; insulting or
obscene comments or gestures;
display or circulation of sexually
suggestive objects or pictures
(including through e-mail); and other
physical, verbal or visual conduct of
a sexual nature. Sex-based
harassment—that is, harassment not
involving sexual activity or language—
may also constitute discrimination if it
is severe or pervasive and directed at
an individual because of his or her sex.
Truly consensual romantic
relationships are not sexual harassment
and are not prohibited by The Cooper
Union’s policies. Individuals should
be aware, however, that romantic
relationships are susceptible to being
determined after the fact to have been
nonconsensual, and even coercive,
whenever there is an inherent power
differential between the parties.
Therefore, any such relationship
between a faculty or staff member and
a student is strongly discouraged.

REQUESTS FOR DISABILITY
ACCOMMODATION
Students seeking an accommodation
for a disability should contact the dean
of students. Such requests may also be
given to the vice president for business
affairs/equal opportunity officer.

PROCEDURES FOR STUDENTS
WITH CONCERNS OR COMPLAINTS
ABOUT DISCRIMINATION AND
HARASSMENT AND
NON-RETALIATION POLICY
All members of the college community
are expected to adhere to the college’s
policies and to cooperate with the
procedures for responding to complaints
of discrimination and harassment. All
are encouraged to report any conduct
believed to be in violation of these
policies. It is in the best interest of the
entire Cooper Union community for
students to report incidents of
discrimination and harassment. All
students and applicants for admission
are protected from coercion,
intimidation, interference or retaliation
for filing a complaint or assisting in
an investigation under any of the
applicable policies and laws.
Subjecting another to retaliatory,
intimidating or coercive conduct for
filing a complaint or participating in an
investigation is prohibited and may be
addressed as a separate violation.
Any person who believes that he
or she has been the subject of
discrimination or harassment may
initially choose to deal with the alleged
offender directly through a face-
to-face discussion, a personal telephone
conversation, e-mail correspondence
or letters. In many cases, this may
effectively resolve the situation;
however, individuals are not required
to address the alleged offender direct-
ly. Such an approach may be ineffec-
tive in correcting the problem, or an
individual may be uncomfortable in
handling the situation alone.

All students are strongly urged to
promptly report concerns of
discrimination and harassment under
the procedures outlined below.

FORMAL COMPLAINT
PROCEDURES FOR STUDENTS
Students who wish to make a formal
complaint may do so in accordance
with the procedures set forth below.

Complaints about Other Students
The harassment of any student is
unacceptable and will not be tolerated
at The Cooper Union. It is in the best
interest of the entire Cooper Union
community for students to report
incidents of discrimination and harass-
ment. Any student who believes he or
she has been subjected to harassment
by another student should submit a
complaint, if possible in writing, to the
vice president for business affairs/
equal opportunity officer, the dean
of students or his or her academic dean.
The college will then designate the
appropriate person to address the
complaint. After a complaint is made,
it will be investigated and an attempt
will be made to resolve the matter as
amicably and privately as possible.
The penalties of expulsion, suspension,
dismissal, warning, probation or loss
of privileges can be meted out to the
offending student in the college’s
discretion and as the college deems
appropriate. The matter may be
referred to the Student Judicial
Committee, in accordance with the
procedures set forth in the Code of
Fair Practice, a copy of which may be
found in the Campus Security and
Safety Booklet.

Complaints about Faculty And
Employees The Cooper Union has
established separate procedures to
handle student complaints about
harassment and discrimination
imposed on students by faculty or staff.
Sexual harassment, whether it
imposes a requirement of sexual
cooperation as a condition of academic
achievement or not, is inimical to the
college’s academic environment.
Harassment and discrimination on
the basis of race, religion, national origin,
sex and/or sexual orientation or any
other characteristic protected by law
is also prohibited. Student complaints
about harassment by staff or faculty
should be filed with the dean of
students, the vice president for
business affairs/equal opportunity
officer, or their academic dean.

The vice president for business
affairs/equal opportunity officer will
investigate, or will appoint an
investigator to investigate, the matter
and try to resolve the matter as
amicably and privately as possible.
If this effort is not successful and if the
vice president for business affairs or
the president deems it appropriate
under the circumstances, a Hearing
Board may be appointed by the
president to review the complaint,
conduct any additional investigation
determined appropriate, and make
recommendations to the president.

A Hearing Board is typically
comprised of an academic dean, a
faculty member and an elected
student representative, all from schools
other than that of the complainant,
although the college retains discretion
to alter the composition of a Hearing
Board as it deems appropriate.

In resolving any matter, the college
retains discretion to take any remedial
action it deems appropriate, including,
without limitation, warning, demotion,
transfer, suspension, training and
termination.

INDEPENDENT INVESTIGATION
AND REVIEW BY TRUSTEES
The Cooper Union, in its discretion,
may conduct an investigation indepen-
dent of or in addition to the procedures
outlined above, at any time. In addition,
although the Board of Trustees will
not typically be involved in the receipt,
investigation and remediation of
complaints of discrimination and
harassment, the Board of Trustees or
committee authorized by the chairman
of the Board of Trustees is authorized
to modify the procedures herein as
it deems appropriate under the
circumstances, and to take remedial
action as it deems appropriate.

Under any of the procedures set
forth above, barring exceptional
circumstances, the investigation will
be commenced within 10 working
days after receipt of the formal
complaint, and the complaining party
and the accused party will be notified
of the outcome of the investigation
within five working days after the
completion of the investigation.

Students with questions as to the
appropriate procedure in a particular
situation should contact the dean of
students, the vice president for
business affairs/equal opportunity
officer, or their academic dean.
NON-RETALIATION
Retaliation against students who complain about perceived discrimination or harassment is strictly prohibited. Complaints of retaliation will be investigated and treated as violations of the college's Nondiscrimination and Anti-harassment Policy.

THE COOPER UNION’S COMPLIANCE WITH LAWS

In accordance with all applicable laws and pursuant to its own policies and operating procedures, The Cooper Union provides for equal opportunity and prohibits unlawful discrimination and harassment. The applicable laws include:

- Title VI of the Civil Rights Act of 1964, as amended, prohibits discrimination against any person on the basis of race, color or national origin in programs or activities receiving federal financial assistance.
- Title VII of the Civil Rights Act of 1964, as amended, prohibits discrimination against any person on the basis of race, color, sex or national origin in connection with employment.
- Title IX of the Education Amendments of 1972, as amended, prohibits discrimination on the basis of sex in the conduct or operation of a school’s educational programs or activities, including admission to these programs and activities.
- Section 504 of the Rehabilitation Act of 1973 prohibits the exclusion of any person solely on the basis of a disability from participation in or access to benefits of any federally financed program or activity; it also prohibits discrimination against any person solely on the basis of disability in any federally financed program or activity.
- The Age Discrimination Act of 1975 prohibits discrimination on the basis of age in programs and activities receiving federal financial assistance.
- The New York Executive Law, Article 15, Section 296-A, prohibits an educational institution from denying the use of its facilities to anyone otherwise qualified or permitting harassment of a student or applicant on the basis of color, race, religion, disability, national origin, sexual orientation, military status, sex, age and marital status.
- The New York Education Law, Section 313, as amended, prohibits educational institutions from discriminating against persons seeking admission as students to any institution, program or course because of race, color, sex, religion, creed, marital status, age, sexual orientation or national origin.
- The New York City Human Rights Law, Section 8-107, prohibits discrimination on the basis of actual or perceived race, creed, color, national origin, age, gender (including gender identity and expression), disability, marital status, partnership status, sexual orientation or alienage or citizenship status in public accommodations. Any person wanting to file an external complaint under any of these laws should consult the Web site of the relevant government agency listed below:
 - Office of Civil Rights, U.S. Department of Education
 www.ed.gov/about/offices/list/ocr/index.html
 - New York State Department of Human Rights
 www.dhr.state.ny.us/offices.html
 - New York City Commission on Human Rights

Revised June 2008

POLICY AND PROCEDURES FOR FACULTY AND STAFF

FACULTY AND STAFF EQUAL EMPLOYMENT OPPORTUNITY AND NONDISCRIMINATION AND ANTI-HARASSMENT POLICIES

The Cooper Union is an equal opportunity employer and is committed to providing a working and learning environment free from unlawful discrimination and to fostering a nurturing and vibrant community founded upon the fundamental dignity and worth of all of its members. The college does not discriminate against or permit harassment of employees or applicants for employment on the basis of race, color, sex, gender (including gender identity and expression), pregnancy, religion, creed, national origin, age, alienage and citizenship status as a perceived or actual victim of domestic violence, disability, marital status, sexual orientation, military status, partnership status, genetic predisposition or carrier status, arrest record or any other legally protected status.

Sexual harassment is strictly prohibited. Harassment on the basis of any other protected characteristic is also strictly prohibited.

The Cooper Union reasonably accommodates employees and applicants with disabilities and also provides reasonable accommodation of religious beliefs and practices in accordance with law. Nothing in these policies shall abridge academic freedom or the college’s educational mission.

Prohibitions against discrimination and harassment do not extend to statements or written materials that are germane to classroom subject matter.

All members of The Cooper Union community are expected to adhere to these policies and to cooperate with the procedures for responding to complaints of discrimination and harassment. They also are encouraged to report any conduct they believe to be in violation of these policies. Management and supervisory personnel in particular are responsible for taking reasonable and necessary action to prevent discrimination and harassment in the workplace and for responding promptly and thoroughly to any such claims. Those individuals include any officer or dean having formal supervisory responsibility over employees. For the purpose of these policies, faculty are supervisors of other faculty when they are acting in
a supervisory role as department chair, dean, academic vice president or similar position. Employees may file an informal or formal complaint under this policy as set forth below. Any individual found to have engaged in discrimination or harassment will be subject to discipline up to and including termination. Retaliation against anyone who files a complaint or participates in an investigation of a complaint is prohibited and will be addressed as a separate violation of this policy.

The Cooper Union provides training programs to educate faculty and administrators about conduct that may constitute a violation of its policies and to inform them of the procedures that are available to respond to alleged violations.

DEFINITIONS
For purposes of these policies and procedures, discrimination, discriminatory harassment and sexual harassment are defined as follows:

DISCRIMINATION
Discrimination is defined as:
- treating members of a protected class less favorably because of their membership in that class; or
- having a policy or practice that has a disproportionately adverse impact on protected class members.

“Protected class” refers to any personal trait or category that is protected by law, including an individual’s race, religion, sex, color, ethnicity, national origin, age, marital status, creed, genetic predisposition and carrier status, sexual orientation, alienage, citizenship status, veteran status, disability or any other characteristic protected by law.

DISCRIMINATORY HARASSMENT
Discriminatory harassment is defined as subjecting an individual to humiliating, hostile or offensive work environment; alters the conditions of employment; or unreasonably interferes with an individual’s work performance on the basis of that individual’s membership in a protected class. This includes sexual harassment, which is described in further detail below.

Under this policy, harassment is verbal or physical conduct that beplates or shows hostility or aversion toward an individual because of his or her race, religion, sex, color, ethnicity, national origin, age, marital status, creed, genetic predisposition and carrier status, sexual orientation, alienage, citizenship status, veteran status, disability or any other characteristic protected by law.

SEXUAL HARASSMENT
Unwelcome sexual advances, requests for sexual favors and other verbal or physical conduct of a sexual nature constitute sexual harassment when:
- submission to such conduct is made either explicitly or implicitly a term or condition of an individual’s employment; or
- submission to or rejection of such conduct by an individual is used as the basis for employment decisions affecting that individual; or
- such conduct has the purpose or effect of unreasonably interfering with an individual’s work performance or creating an intimidating, hostile, demeaning or offensive working environment.

Sexual harassment may include a range of subtle and not so subtle behaviors and may involve individuals of the same or different gender. Depending on the circumstances, these behaviors may include, but are not limited to unwanted sexual advances or requests for sexual favors; sexual jokes and innuendos; verbal abuse of a sexual nature; commentary about an individual’s body, sexual prowess or sexual deficiencies; leering, catcalling or touching; insulting or obscene comments or gestures; display or circulation in the workplace of sexually suggestive objects or pictures (including through e-mail); and other physical, verbal or visual conduct of a sexual nature. Sexual harassment—that is, harassment not involving sexual activity or language—may also constitute discrimination if it is severe or pervasive and directed at employees because of their sex.

Truly consensual romantic relationships are not sexual harassment and are not prohibited by The Cooper Union policies. Individuals should be aware, however, that romantic relationships are susceptible to being determined after the fact to have been nonconsensual, and even coercive, whenever there is an inherent power differential between the parties. Therefore, any such relationship with a subordinate employee or a student is strongly discouraged.

DISABILITY ACCOMMODATION
Employees seeking an accommodation for a disability should contact the human resources manager, Yvonne Moray, or vice president for business affairs/equal opportunity officer, Robert Hawks.

INQUIRIES ABOUT POLICY
Inquiries concerning any policy, program or other activity at The Cooper Union may be referred to the following individual who has been designated by The Cooper Union to oversee the continued application of the school’s nondiscrimination and anti-harassment policies: Robert E. Hawks, Vice President for Business Affairs/Equal Opportunity Officer The Cooper Union for the Advancement of Science and Art Business Office 30 Cooper Square, 7th Floor New York, NY 10003 Tel. 212.353.4150

INDIVIDUALS AND CONDUCT COVERED
These employee policies apply to all applicants and employees, and prohibit harassment, discrimination and retaliation whether engaged in by fellow employees, by a supervisor or manager, or by someone not directly connected to The Cooper Union (e.g., an outside vendor, consultant or customer). Conduct prohibited by these policies is unacceptable in the workplace and in any work-related setting outside the workplace. Any individual found to have engaged in sexual or any other form of harassment, or other inappropriate conduct, will be disciplined as appropriate, up to and including discharge.

NON-RETRALITATION POLICY
The Cooper Union will not in any way retaliate against an individual who, in good faith, makes a complaint or report of harassment, or participates in the investigation of such complaint or report. Retaliation against any individual for, in good faith, reporting a claim of discrimination or harassment or cooperating in the investigation of same will not be tolerated and will itself be subject to appropriate discipline.

Reports of retaliation should be made in the same manner as complaints reporting discrimination and harassment and such complaints will be investigated.

COMPLAINT PROCEDURES FOR FACULTY AND OTHER EMPLOYEES AND APPLICANTS
Any employee who has witnessed, been subject to, or believes that he or she has been the subject of discrimination, sexual or any other form of harassment or retaliation by anyone at The Cooper Union should, and is encouraged to, bring the matter to the attention of a supervisory staff member or the vice president for business affairs/equal opportunity officer referred to above or to other persons designated to receive complaints as set forth below. Individuals should not feel obligated to file their complaints with their immediate supervisor before bringing the matter to the attention of the other designated representatives.

IMPORTANT NOTICE TO ALL EMPLOYEES
Employees who have experienced conduct they believe is contrary to this policy have an obligation to take advantage of this complaint procedure. An employee’s failure to fulfill this obligation could affect his or her rights in pursuing legal action. Also, please note, federal, state and local discrimination laws establish specific time frames for initiating a legal proceeding pursuant to those laws.

THE INVESTIGATION AND CONFIDENTIALITY
A prompt, thorough and impartial investigation of the alleged incident will be conducted to the extent possible, and appropriate corrective action will be taken if warranted. Barring exceptional circumstances, the investigation will be commenced within 10 working days after receipt of the formal complaint. To the extent consistent with adequate investigation and appropriate corrective action, complaints of
discrimination and harassment will be treated as confidential. Within five working days after the conclusion of the investigation, the complaining party and the accused party will be notified of the outcome of the investigation.

RESPONSIVE ACTION
Misconduct constituting harassment, discrimination or retaliation will be dealt with promptly and adequately. Responsive action may include, without limitation, training, referral to counseling, monitoring the offender and/or disciplinary action such as warning, reprimand, withholding of a promotion or pay increase, reduction of wages, demotion, reassignment, temporary suspension without pay or termination, as The Cooper Union believes appropriate under the circumstances.

GRIEVANCE PROCEDURE UNDER THE COOPER UNION’S NONDISCRIMINATION AND ANTI-HARASSMENT POLICIES
An employee of The Cooper Union who believes that he or she has been discriminated against or harassed in violation of any provision of The Cooper Union’s nondiscriminatory or anti-harassment policies may ask the offended to stop his/her behavior. An employee should not feel obligated to confront the offender, however, and may also attempt to resolve such grievance in the following manner.

Step 1—Informal Complaint
EMPLOYEES WITH COMPLAINTS IN WHICH THE IMMEDIATE SUPERVISOR IS NOT DIRECTLY INVOLVED
Generally should start at Step 1. Employees with complaints which are not directly involved with the immediate supervisor or in which the employee is not comfortable presenting the complaint directly to his/her supervisor should proceed directly to Step 2.

The complaint should present the complaint, if possible in writing, to his or her immediate superior as soon as possible after the date on which the alleged act of discrimination or harassment took place, and should also forward a copy of any written complaint in a sealed envelope marked “CONFIDENTIAL” to the vice president for business affairs/equal opportunity officer or to the human resources manager.

THE COOPER UNION’S COMPLIANCE WITH FEDERAL, STATE AND LOCAL LAWS PROMOTING EQUAL EMPLOYMENT OPPORTUNITY, PROHIBITING DISCRIMINATION AND HARASSMENT AND AUTHORIZING AFFIRMATIVE ACTION
In accordance with all applicable laws and pursuant to its own policies and operating procedures, The Cooper Union provides for equal opportunity, prohibits unlawful discrimination and harassment and takes affirmative action. The applicable laws include:
• Title VI of the Civil Rights Act of 1964, as amended, prohibits discrimination against any person on the basis of race, color or national origin in programs or activities receiving federal financial assistance.
• Title VII of the Civil Rights Act of 1964, as amended, prohibits employment discrimination against any person because of race, color, religion, sex, pregnancy status or national origin.
• Title IX of the Education Amendments of 1972, as amended, prohibits discrimination on the basis of sex in the conduct or operation of a school’s educational programs or activities, including employment in these programs and activities.
• The Equal Pay Act of 1963 prohibits discrimination on the basis of sex in rates of pay.
• Executive Order 11246, as amended, prohibits discrimination in employment because of race, color, religion, sex or national origin and requires affirmative action to ensure equality of opportunity in all aspects of employment.
• Section 503 of the Rehabilitation Act of 1973 requires a federal contractor to take affirmative action to employ and advance in employment qualified workers with disabilities. Section 504 prohibits the exclusion of any person solely on the basis of a disability from participation in or access to benefits of any federally financed program or activity; it also prohibits discrimination against any person solely on the basis of disability in any federally financed program or activity.
• The Americans with Disabilities Act of 1990 prohibits discrimination in public accommodation and in employment against a qualified person with a disability and requires an employer to provide qualified applicants and employees with reasonable accommodations.
• The Age Discrimination in Employment Act of 1967, as amended, prohibits discrimination in employment on the basis of age. The Age Discrimination Act of 1975 prohibits discrimination on the basis of age in programs and activities receiving federal financial assistance.
• The Uniformed Services Employment and Reemployment Rights Act (USERRA) prohibits discrimination in employment based on past, current or future military obligations.
• The Vietnam Era Veterans’ Readjustment Assistance Act of 1974 and the Veterans Employment Opportunities Act of 1998, as amended, prohibit job discrimination and require affirmative action to employ and advance in employment qualified special disabled veterans, veterans of the Vietnam Era, recently separated veterans and any other veterans who served on active duty during a war or in a campaign for which a campaign badge has been authorized.
• The Immigration Reform and Control Act of 1986 prohibits employers from discriminating on the basis of citizenship status. The prohibition extends to employers who hire only U.S. citizens or U.S. citizens and green card holders, as well as to employers who prefer to employ unauthorized workers or temporary visa holders rather than U.S. citizens and other workers with employment authorization.
• The Small Business Act of 1958, as amended, Section 15(g)(1), requires federal contractors to afford maximum practicable business opportunities to Small Business Concerns, including businesses owned by disadvantaged individuals, disabled veterans and women.
• The New York Executive Law, Article 15, Section 296(1), prohibits discrimination against any person in employment because of age, creed, color, national origin, sexual orientation, military status, sex, disability, genetic predisposition or carrier status, marital status or arrest record. Section 296(4) prohibits an educational institution from denying the use of its facilities to anyone otherwise qualified or permitting harassment of a student or applicant on the basis of color, race, religion, disability, national origin, sexual orientation, military status, sex, age and marital status.

Step 2—Formal Grievance/Step
Step 2—Formal Grievance/Step
In the case where the complainant feels uncomfortable presenting it to his or her immediate supervisor or when the complainant is dissatisfied by the results of Step 1, the grievance may be formally presented by the grievant to the vice president for business affairs/equal opportunity officer or to the human resources manager. The grievance should be written, if possible, and set forth specifically the facts on which the grievance is based. The equal opportunity officer, or an authorized designee, will investigate the grievance and/or review the investigation already conducted and make a determination on the grievance and appropriate remedial action.

SEPARATE RIGHTS OF FACULTY AND BARGAINING UNIT STAFF
Nothing herein precludes faculty and bargaining unit staff from seeking redress under their collective bargaining agreements.

INDEPENDENT INVESTIGATION AND REVIEW BY TRUSTEES
The Cooper Union, in its discretion, may conduct an investigation independent of or in addition to the procedures outlined above at any time. In addition, although the Board of Trustees will not typically be involved in the receipt, investigation and remediation of complaints of discrimination and harassment, the Board of Trustees or committee authorized by the chairman of the Board of Trustees is authorized to modify the procedures herein as it deems appropriate under the circumstances, and to take remedial action as it deems appropriate in certain cases.
Index

Academic standards and regulations:
General, 15
Architecture, 32–35
Art, 47–49
Engineering, 67–68
Humanities and Social Sciences, 114–115
Accreditation, 5
Administration, The Cooper Union, 126
Admissions, Engineering Master’s degree program, 13
Admission after three years of high school, 14
Admission, early decision:
Art, 13
Engineering, 14
Admission information and application, 8–14
Admission, rolling (Art), 14
Advanced Placement credit:
Engineering, 14
Humanities and Social Sciences, 14, 114
Alcoholic beverages and illegal drugs, policy on, 17, 18
Alumni Association, Cooper Union, 8
Appeal (of academic standards and regulations), 49
Application calendar, 9
Architecture, 15
The Irwin S. Chanin School of:
Academic standards and regulations, 32–35
Application calendar, 9
Attendance, 15
Awards and prizes, 28
Bachelor of Architecture curriculum, 31–32
Courses, 39–41
Faculty, 42
Freshman requirements, 9–10
Retention and graduation, 11
Scholarships, 27
Transfer requirements, 12
Art, The School of:
Academic standards and regulations, 47–49
Application calendar, 9
Attendance 15, 47
Awards and prizes, 28
Bachelor of Fine Arts curriculum, 44–46
Certificate requirements, 14, 44
Courses, 52–58
Electives, 45
Facilities, 50–51
Faculty, 59–60
Freshman requirements 10
Nonresident study, 46
Retention and graduation, 11
Scholarships, 27–28
Transfer requirements, 12
Attendance:
General, 15
Architecture, 15
Art, 15, 47
Engineering, 15
Humanities and Social Sciences, 15, 115
Awards and prizes, 27–28
Books, materials and school supplies, 24
Budget guide, 26
Calendar:
Academic, 2008–09, 2
Application, 9
Changes, 15
Calligraphy courses, 52
Center Counseling and Placement, 7–8
Certificate in Art requirements, 14, 44
Change of program
Adding a course, 34, 48
Change of section, 34, 48
General, 17
Withdrawal from a course, 33, 48, 69
Chemical Engineering:
Courses, 88–89
Curriculum, 71–73
Chemistry, 86
Civil Engineering:
Courses, 89–92
Curriculum, 74–75
College Boards, 13
Computer Center, 63
Computer Lab (Art: Film and Video), 51
Computer courses (Art), 52
Continuing Education, 7
Cooper Union, The:
Accreditation, 5
Administration, 126
Alumni Association, 8
Facilities, 5–7
Financial aid, 24–26
History, 4
Programs, 5
Scholarships, 27
Trustees, 126
C.V. Starr Foundation, 64
Courses:
Architecture, 39–41
Art, 52–58
Art History, 121–123
Chemistry, 106–107
Engineering, 88–109
Biology, 105
Chemical Engineering, 88–89
Civil Engineering, 89–92
Computer Science, 107
Electrical Engineering, 92–94
Engineering Sciences, 101
Interdisciplinary Engineering, 102–105
Mechanical Engineering, 97–101
Mathematics, 102–108
Physics, 109
Humanities and Social Sciences, 114–125
Credits:
Architecture, 32
Art, 47
Engineering, 65
Curriculum:
Bachelor of Architecture, 31–32
Bachelor of Engineering, 65–67, 71–86
Bachelor of Fine Arts, 44–46
Humanities and Social Sciences, 114
Master of Engineering, 85
Dean’s List (Engineering), 65
Design and Typography, The Center for,
staff, 60
Disabled Student Services, 7
Disciplinary sanctions, 20–21
Dismissal, 15, 21
Dismissal and academic probation
Architecture, 33
Art, 49
Engineering, 69
Drawing:
Courses, 52–53
Facilities, 50–51
Electrical Engineering:
Courses, 92–94
Curriculum, 76–79
Emeriti, Cooper Union, 126
Engineering, 114
The Albert Nerken School of:
Academic standards, 67–68
Advisory Council, 113
Application calendar, 9
Attendance, 15
Awards and prizes, 28–29
Bachelor’s degree programs, 65–66
Courses, 88–109
Curricula, 65–67, 71–86
Facilities and Research, 63–64
Faculty, 110–113
Freshman requirements, 11
Master of Engineering
application requirements, 13
Transfer requirements, 12
Engineering Building, 5
Engineering Sciences, courses, 101
English proficiency, 14
Examinations, final (Engineering), 69
Exchange programs (Art), 46
Faculty:
Architecture, 42
Art, 59–60
Engineering, 110–113
Humanities and Social Sciences, 124–125
Fair Practice Code, 19–23
Fees and expenses, 23–24
Film:
Courses, 53–54
Facilities, 50–51
Financial aid, 24–26
Foreign language courses, 123
Foundation Building, 5
Freshman application requirements, 9–11
Freshman orientation, 7
Freshman profile—Fall 2007, 11
Grades:
Architecture, 33
Art, 48
Engineering, 68–69
Humanities and Social Sciences, 114–115
Graduation:
Architecture, 35
Art, 49
Engineering, 66
Fee, 24
Graphic Design:
Courses, 54–55
Facilities, 50
Great Hall, 7
Health, 15
History of The Cooper Union, 4
Honors, graduation with (Engineering), 66
Housing, 6
Humanities and Social Sciences, 114
Faculty of:
Academic standards and regulations, 114–115
Alms and objectives, 114
Attendance, 15, 115
Awards and prizes, 29
Courses, 116–123
Curriculum, 114
Faculty, 124–125
Immunization, Vaccination and, 15–16
Independent study:
Architecture, 34
Art, 47
Humanities and Social Sciences, 114
Insurance Plan, 16
Interdisciplinary Engineering:
Courses, 102–105
International students, 14, 24
Leave of absence:
Architecture, 34
Art, 49
Library, 6–7
Long Island City Studios, 6
Lubalin, Herb, Study Center of Design and Typography staff, 60
Master of Engineering:
Admission, 70
Application requirements, 13
Curricula, 85
Degree requirements, 85
Fellowships, 85
Program, 70
Thesis project, 85
Please print in ink or use a typewriter. □ September 2009

A $65 nonrefundable application fee must be submitted with this application.
Make checks payable to The Cooper Union. Only checks or money orders will be accepted. Your cancelled check is your receipt.

Check one category: □ First-Year Applicant
□ Transfer Applicant
□ Master’s Degree, Engineering (Deadline: March 1)

Check only one major from the following:

The Irwin S. Chanin
School of Architecture

- □ Bachelor of Architecture
 (5-year degree)
 First-Year Deadline: Jan 5
 Transfer Deadline: Jan 5

The Albert Nerken
School of Engineering

- □ Chemical Engineering
- □ Civil Engineering
- □ Electrical Engineering
- □ Mechanical Engineering
- □ Interdisciplinary Engineering
- □ General Engineering (Bachelor of Science)

- □ Early Decision
 Deadline: Dec 1

First-Year Deadline: Feb 2
Transfer Deadline: Mar 13
□ Early Decision (First-Year only)
Deadline: Dec 1

Social Security #

Name □ Mr. □ Ms.
First Middle Last

Last name while in high school if now different:

Date of Birth
Birthplace City / State / Country

Are you a U.S. citizen? □ Yes □ No

Are you a Permanent Resident? □ Yes □ No

If not, what type of visa do you have?
□ A □ B □ F □ G □ H
□ I □ J □ R □ L □ M □ Other

Do you hold an I-20 from any institution? □ Yes □ No

Home Address
No. and Street Apt# County City and State Zip Code

Mailing Address
No. and Street Apt#
County City and State Zip Code

Telephone e-mail address

1 Please do not include any support material—i.e., slides, sketchbooks, CDs/DVDs—at this time. We will accept portfolio work which accompanies your hometest. The hometest will be mailed to you in December (Early Decision Applicants) and January (Regular Decision Applicants).

2 All applicants must provide a United States address to use for application processing.
Year of H.S. Graduation: ____________________________ Name of Your High School __

Address of High School __

No. and Street ___

City and State __________ Zip Code __________ CEEB Code ____________

How did you find out about The Cooper Union?

Have you ever attended an Open House or Tour at The Cooper Union? □ Yes □ No

Have you ever attended a Portfolio Day? □ Yes □ No

If yes, please indicate where and when.

Parents', Guardians’, or Spouse’s Names

Home Address ___

No. and Street ___

City and State __________ Zip Code __________

Telephone ____________________________ parent’s e-mail address __________________________

Occupation __

Employer(s) __

Are your Parents/Guardians college graduates? □ Yes □ No

If so, what college(s)?

Is English your first language?

Note: All applicants (first-year, transfer and graduate students) MUST answer the following questions:

Have you been convicted of a felony? □ Yes □ No

Have you been dismissed from a college for disciplinary reasons? □ Yes □ No

Ethnic Survey Response is voluntary and the information will be kept confidential. Refusal to provide this information will not subject the applicant to any adverse treatment. The information is being collected for statistical purposes only and will not be used in a discriminating manner.

With which ethnic group are you most closely identified?

☐ African American ☐ Puerto Rican–Commonwealth ☐ Caribbean American
☐ Puerto Rican–Mainland ☐ Caucasian ☐ Cuban American
☐ Chinese ☐ Other Latino ☐ Korean
☐ Japanese ☐ Other (please specify) ☐ Native American Indian
☐ Filipino ☐ Vietnamese-Laotian-Cambodian ☐ Native Hawaiian, Pacific Islander
☐ South Asian-Indian-Pakistani ☐ Mexican American ☐ Multi-ethnic
☐ Other

All applicants should sign below:

Signature __ Date ____________________________
Only transfer and graduate engineering applicants should answer the following:
(If you do not complete this section, you will not be eligible to receive any credit for previous work.)

<table>
<thead>
<tr>
<th>Colleges attended</th>
<th>Name</th>
<th>Date</th>
<th>Credits Completed</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>City and State</td>
<td>Zip Code</td>
<td>CEEB Code</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colleges attended</th>
<th>Name</th>
<th>Date</th>
<th>Credits Completed</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>City and State</td>
<td>Zip Code</td>
<td>CEEB Code</td>
<td></td>
</tr>
</tbody>
</table>

Do you plan to graduate? ☐ Yes ☐ No

If so, when?

Are you in good academic standing? ☐ Yes ☐ No

Are you eligible to return to college last attended? ☐ Yes ☐ No

If no, please explain.

Reasons for desiring transfer:

If you have been out of college more than four months, indicate what you have been doing since leaving school.

over: Master’s Degree Applicants only
For Applicants to the
Master's Program Only

Full-Time Employment Record:
Indicate the most recent full-time position and list others on a separate page appended to this application.

From To

Company Address

Position Job Description

Extra-Curricular Activities:
Professional Engineering Societies

Honor Societies

Research Projects (include details of papers delivered or published)

Graduate Engineering

Check ☐ major option you intend to follow in the Graduate Engineering Program at Cooper Union:
☐ Chemical ☐ Civil ☐ Electrical ☐ Mechanical

Please indicate the minor you intend to follow in the Graduate Engineering Program at Cooper Union (optional):

☐ Yes ☐ No
Are you working in any of the fields checked above?

☐ Yes ☐ No
Have you had your thesis subject approved?

☐ Yes ☐ No
Who will be your thesis adviser? (optional)

I understand that I am expected to complete the prescribed curriculum for the course in which I am enrolled and that I will be retained only if I comply with the scholastic requirements and the regulations of the School of Engineering Graduate Program.

Signature Date