ABOUT THE COOPER UNION

VISION

The Cooper Union for the Advancement of Science and Art is dedicated to Peter Cooper’s radical commitment to diversity and his founding vision that fair access to an inspiring free education and forums for courageous public discourse foster a just and thriving world.

MISSION

Our mission is to sustain The Cooper Union as a free center of learning and civic discourse that inspires inventive, creative, and influential voices in architecture, art, and engineering to address the critical challenges and opportunities of our time.

ACADEMIC VISION

Through outstanding academic programs in architecture, art and engineering, and a Faculty of Humanities and Social Sciences, The Cooper Union for the Advancement of Science and Art prepares talented students to make enlightened contributions to society.

The Cooper Union for the Advancement of Science and Art, founded in 1859 by Peter Cooper, prepares talented students to make enlightened contributions to society through outstanding academic programs in architecture, art and engineering. The institution provides a challenging, interactive curriculum with distinguished, creative faculty and fosters rigorous, humanistic learning in a dynamic setting.
The Cooper Union for The Advancement of Science and Art operates within a two semester calendar (fall and spring). Most classes are scheduled Monday through Friday between the hours of 8 am and 9 pm. We offer a limited summer session with courses typically provided in Math, Physics, and Engineering.

2022–2023

- **Fri, Aug 5**: Student Bill Due Date
- **Sun, Aug 21**: Welcome Week Begins
- **Sun, Aug 21**: Residence Hall Move-In
- **Sun, Aug 21–Sun, Aug 28**: In-Person Welcome Week
- **Mon, Aug 29**: Fall 2022 semester begins
- **Mon, Sept 5**: Labor Day/Offices and classrooms closed
- **Tues, Sept 6**: Course add/drop deadline
- **Tues, Oct 11**: Outstanding Student Bills Due
- **Fri, Oct 21**: Midterm Break/No Classes
 Administrative offices remain open
- **Tues, Oct 25**: Last day to withdraw from classes
- **Tues, Nov 15–Mon, Nov 21**: Course Registration for Spring 2022
- **Tues, Nov 22**: MODIFIED SCHEDULE/Friday classes meet
- **Thurs, Nov 24–Fri, Nov 25**: Thanksgiving/Offices and classrooms closed
- **Mon, Nov 28**: Classes resume
- **Wed, Dec 7**: MODIFIED SCHEDULE/Friday classes meet
- **Fri, Dec 9**: Study Period/No Classes
- **Mon, Dec 12–Fri, Dec 16**: Final classes, critiques, and exams
- **Fri, Dec 16**: End of fall term/Last Day of Fall 2022 semester
- **Mon, Dec 19–Mon, Jan 16**: Winter recess/Offices and classrooms closed
- **Wed, Dec 21/Mon, Jan 2**: Staff Holiday
Tues, Jan 3
Administrative offices reopen/All grades due

Mon, Jan 16
Martin Luther King, Jr. Day/Offices and classrooms closed

Tues, Jan 17
Spring 2023 semester begins/Monday classes meet

Tues, Jan 17–Tues, Jan 24
Course adjustment period Students can add or drop courses with advisor assistance

Tues, Jan 24
Course add/drop deadline

Wed, Feb 15
MODIFIED SCHEDULE/Friday classes meet

Fri, Feb 17–Mon, Feb 20
Founder’s Day/President’s Day/Offices and classrooms closed

Fri, Mar 10
Outstanding Student Bills Due

Sat, Mar 11 - Sun, Mar 19
Spring Recess/No Classes/Administrative offices remain open

Tues, Mar 21
Last day to withdraw from classes

Tues, Apr 18–Fri, Apr 21
Course Registration for Summer 2023 and Fall 2023

Thurs, May 4–Fri, May 5
Study Period/No classes

Mon, May 8–Fri, May 12
Final classes, critiques, and exams

Fri, May 12
Last day of Spring 2023 semester

Mon, May 15
Senior grades due/Senior grades due

Wed, May 17
All non-senior grades due

Tues, May 23
Commencement Rehearsal

Tues, May 23
End of the Year Show Opening

Wed, May 24
Commencement

Mon, May 29
Memorial Day/Offices and classrooms closed

Mon, June 19
Juneteenth/Offices and classrooms closed

Tues, July 4
Independence Day/Offices and classrooms closed
ACCREDITATION

The Cooper Union is accredited by the Middle States Commission on Higher Education; all of the degree programs are registered with the New York State Education Department. In addition, the program leading to the bachelor of architecture degree is accredited by the National Architectural Accrediting Board, the program leading to the bachelor of fine arts degree is accredited by the Association of Schools of Art and Design and the four programs (chemical, civil, electrical and mechanical engineering) leading to the bachelor of engineering degree are accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Accredited & Post-Professional Programs

The following programs at The Cooper Union have been registered by the New York State Education Department.

Accredited

<table>
<thead>
<tr>
<th>Program</th>
<th>Hegis Code</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>0202</td>
<td>B.Arch.</td>
</tr>
<tr>
<td>Engineering</td>
<td>0901</td>
<td>B.S.</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>0906</td>
<td>B.E.</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>0908</td>
<td>B.E.</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>0909</td>
<td>B.E.</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>0910</td>
<td>B.E.</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>1001</td>
<td>B.F.A.</td>
</tr>
<tr>
<td>Master of Science in Architecture (2019)</td>
<td>0202</td>
<td></td>
</tr>
<tr>
<td>Master of Architecture II (renamed 2019)</td>
<td>0202</td>
<td></td>
</tr>
<tr>
<td>Master of Engineering</td>
<td>0901</td>
<td>M.E.</td>
</tr>
</tbody>
</table>

Concentrations in Civil, Chemical, Mechanical and Electrical Engineering
APPLYING TO COOPER UNION
APPLICATION INSTRUCTIONS
AND DEADLINES

Undergraduate
The Cooper Union uses the Common Application as its first-year undergraduate application form. Transfer and Graduate applicants should submit their applications through the website.

Early Decision:
- The Albert School of Engineering: Monday, November 1, 2022
- The School of Art and The Irwin S. Chanin School of Architecture: Wednesday, December 1, 2022

Regular Decision for all three schools: Wednesday, January 5, 2023

Graduate
Master of Science in Architecture: January 5, 2023
Master of Engineering: February 15, 2023

Non-Matriculating Student Programs
The School of Art: Exchange
ADMISSION PROCESS

THE IRWIN S. CHANIN
SCHOOL OF ARCHITECTURE

Undergraduate/First-Year

EARLY DECISION

If The Cooper Union is your first choice, you may consider applying early decision. If admitted via early decision you must accept our offer and withdraw your other college applications.

STEP 1 Submit the first part of your application online by December 1, 2022.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by December 1, 2022:
 • Your official high school transcript or GED certificate (required for all applicants)
 • Any official college transcripts (sent directly from the college or university)
 • Recommendation letter (1 strongly encouraged)
 • Official TOEFL, IELTS, or DET scores, if applicable*

STEP 4 You will receive the Studio Test via email on December 8, 2022. You will have approximately one month to complete the test. The Office of Admissions must receive the Studio Test and all application materials no later than January 5, 2023. Extensions are not permitted unless in the case of extenuating circumstances. We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails (like your Studio Test and admission decision) from going to spam!

Please follow all instructions carefully. For First Year applicants, no additional portfolio material should be sent.

STEP 5 You will receive an admission decision by February 1, 2023.
REGULAR DECISION

STEP 1 Submit the first part of your application online by January 5, 2023.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by January 5, 2023:
 • Your official high school transcript or GED certificate (required for applicants)
 • Any official college transcripts (sent directly from the college or university)
 • Recommendation letter (1 strongly encouraged)
 • Official TOEFL, IELTS, or DET scores, if applicable*

STEP 4 You will receive the Studio Test via email on January 9, 2023. You will have approximately one month to complete the test. The Office of Admissions must receive the Studio Test and all application materials no later than February 6, 2023. Extensions are not permitted unless in the case of extenuating circumstances. We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails (like your Studio Test and admission decision) from going to spam!

Please follow all instructions carefully. For First Year applicants, no additional portfolio material should be sent.

STEP 5 You will receive an admission decision by April 1, 2023.

Calculus is a required first-year course for all architecture students. Entering first-year students must have completed Mathematics (including Trigonometry, Algebra II and Pre-Calculus). Any student who has not completed Pre-Calculus in high school must do so during the summer before enrollment, and must submit an official transcript documenting successful completion of the course.

*Undergraduate applicants whose native language is not English and who have not graduated from a secondary school in a country with English as the official medium of instruction are required to take one of the below exams. TOEFL (Test of English as a Foreign Language), IELTS (International English Language Testing System), or DET (Duolingo English Testing) Scores per the below requirements. Scores must be submitted directly by the testing service to admissions@cooper.edu.

Deferral of an Offer of Admission in the School of Architecture: Due to the small size of the programs, the deferral of an offer of admission to the Bachelor of Architecture [undergraduate] and/or Master of Science in Architecture (graduate) program is not permitted.
Admission After Three Years of High School: Candidates of exceptional merit may be considered for admission after completion of three years of high school. Engineering applicants must have excellent high school averages and test scores. Art and architecture applicants must have excellent high school records and exceptional ability. A recommendation from the high school principal, at least one recommendation from a teacher and an interview will be required. In accordance with the regulations of individual states, a student may or may not be eligible to receive an Equivalency Diploma after completion of a specific number of credits in appropriate subject areas at The Cooper Union. It is the responsibility of the applicant to investigate his or her state regulations in this regard.

Transfer/The Irwin S. Chanin School of Architecture

You may apply for transfer to The Irwin S. Chanin School of Architecture if:

You have completed at least one year of an accredited architecture program elsewhere by June of the year for which you are applying.

OR by June you hold a bachelor’s degree or the equivalent in a discipline other than architecture.

OR

you can submit a portfolio of your creative work and you have begun studies in a discipline related to architecture.

EARLY DECISION

If The Cooper Union is your first choice, you may consider applying early decision. If admitted via early decision you must accept our offer and withdraw your other college applications.

STEP 1 Submit the first part of your application online by December 1, 2022.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by December 1, 2022:

• Your official high school transcript or GED certificate (required for all applicants)
• Any official college transcripts (sent directly from the college or university)
• Recommendation letter (1 strongly encouraged)
• Official TOEFL, IELTS, or DET scores, if applicable*
STEP 4 You will receive the Studio Test via email on December 8, 2022. You will have approximately one month to complete the test. The Office of Admissions must receive the Studio Test and all application materials no later than January 5, 2023. Extensions are not permitted unless in the case of extenuating circumstances. We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails (like your Studio Test and admission decision) from going to spam!

The Studio Test will include portfolio requirements for transfers. All portfolio work should be sent with the studio test.

Please follow all instructions carefully.

STEP 5 You will receive an admission decision by February 1, 2023.

REGULAR DECISION

STEP 1 Submit the first part of your application online by January 5, 2023.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by January 5, 2023:
 - Your official high school transcript or GED certificate (required for applicants)
 - Any official college transcripts (sent directly from the college or university)
 - Recommendation letter (1 strongly encouraged)
 - Official TOEFL, IELTS, or DET scores, if applicable

STEP 4 You will receive the Studio Test via email on January 9, 2023. You will have approximately one month to complete the test. The Office of Admissions must receive the Studio Test and all application materials no later than February 6, 2023. Extensions are not permitted unless in the case of extenuating circumstances. We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails (like your Studio Test and admission decision) from going to spam!
The Studio Test will include portfolio requirements for transfers. Please follow all instructions carefully.

STEP 5 You will receive an admission decision by April 1, 2023.

If admitted, transfer students are offered admission into a specific year of the five-year design sequence. Placement in the design sequence is a condition of the offer of admission and not subject to further review or appeal. By accepting the offer of admission, the transfer student agrees to this placement and acknowledges his/her anticipated graduation date.**

*Undergraduate applicants whose native language is not English and who have not graduated from a secondary school in a country with English as the official medium of instruction are required to take one the below exams. TOEFL (Test of English as a Foreign Language), IELTS (International English Language Testing System), or DET (Duolingo English Testing) Scores per the below requirements. Scores must be submitted directly by the testing service to admissions@cooper.edu.

**It will be necessary for the matriculating transfer student to successfully complete the design studio to which he/she is admitted, as well as all subsequent studios, as part of his or her degree requirements. There is no opportunity for transfer students to accelerate through the required design sequence. Transfer applicants from programs other than accredited architecture programs will likely be placed in the first-year design studio (Architectonics). The official academic transcript of a transfer student will be reviewed prior to the student’s first registration. This review will determine what, if any, additional coursework may be eligible for transfer credit.

Deferral of an Offer of Admission from the School of Architecture: Due to the small size of the programs, the deferral of an offer of admission to the Bachelor of Architecture (undergraduate) and/or Master of Science in Architecture (graduate) program is not permitted.
First Year

EARLY DECISION

If The Cooper Union is your first choice, you may consider applying early decision. If admitted via early decision you must accept our offer and withdraw your other college applications.

STEP 1 Submit the first part of your application online by December 1, 2022.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by December 1, 2022:
- Your official high school transcript or GED certificate (required for all applicants)
- Any official college transcripts (sent directly from the college or university)
- Recommendation letter (1)
- Official TOEFL, IELTS, or DET scores, if applicable*

STEP 4 You will receive the Hometest via email on December 8, 2022.
You will have approximately one month to complete the test. The Office of Admissions must receive the Hometest and all application materials no later than January 5, 2023. Extensions are not permitted unless in the case of extenuating circumstances. We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails (like your Hometest and admission decision) from going to spam.

The Hometest will include portfolio requirements. All portfolio work should be sent with the Hometest.

Please follow all instructions carefully!

STEP 5 You will receive an admission decision by February 1, 2023.

REGULAR DECISION

STEP 1 Submit the first part of your application online by January 5, 2023.

STEP 2 You will receive a confirmation email.
STEP 3 You will have to prepare and submit by January 5, 2023:
• Your official high school transcript or GED certificate (required for applicants)
• Any official college transcripts [sent directly from the college or university]
• Recommendation letter [1]
• Official TOEFL, IELTS, or DET scores, if applicable*

STEP 4 You will receive the Hometest on January 9, 2023.
You will have approximately one month to complete the test. The Office of Admissions must receive the Hometest and all application materials no later than February 6, 2023. Extensions are not permitted unless in the case of extenuating circumstances. We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails [like your Hometest and admission decision] from going to spam!

The Hometest will include portfolio requirements. All portfolio work should be submitted with the Hometest.

Please follow all instructions carefully!

STEP 5 You will receive an admission decision by April 1, 2023.

*Undergraduate applicants whose native language is not English and who have not graduated from a secondary school in a country with English as the official medium of instruction are required to take one of the below exams.
TOEFL (Test of English as a Foreign Language), IELTS (International English Language Testing System), or DET (Duolingo English Testing) Scores per the below requirements. Scores must be submitted directly by the testing service to admissions@cooper.edu.

Potential School of Art students who have received a preliminary review at National Portfolio Days, which occur after The Cooper Union’s regular admission deadline may be invited to apply after the regular admission deadline. All reasonable effort is made by the School of Art Admissions Committee to review these applications in a fair and timely fashion.
Admission After Three Years of High School Candidates of exceptional merit may be considered for admission after completion of three years of high school. Engineering applicants must have excellent high school averages and test scores. Art and architecture applicants must have excellent high school records and exceptional ability. A recommendation from the high school principal, at least one recommendation from a teacher and an interview will be required. In accordance with the regulations of individual states, a student may or may not be eligible to receive an Equivalency Diploma after completion of a specific number of credits in appropriate subject areas at The Cooper Union. It is the responsibility of the applicant to investigate his or her state regulations in this regard.

Transfer/School of Art
You may apply for transfer to The School of Art if:
You have completed 18-60 credits of studio art courses OR you have previously earned a baccalaureate degree in a discipline other than art

EARLY DECISION

STEP 1 Submit the first part of your application online by December 1, 2022.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by December 1, 2022:
- Your official high school transcript or GED certificate (required for all applicants)
- Your official college transcripts (sent directly from the college or university)
- Recommendation letters (2)
- Official TOEFL, IELTS, or DET scores, if applicable*

STEP 4 You will receive a Hometest on December 8, 2022, which you must complete and submit by Wednesday, January 5, 2023.

We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails (like your Hometest and admission decision!) from going to spam.

The Hometest will include portfolio requirements. All portfolio work should be sent with the Hometest.

Please follow all instructions carefully.

STEP 5 You will receive an admission decision by February 1, 2023.
REGULAR DECISION

STEP 1 Submit the first part of your application online by January 5, 2023.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by January 5, 2023:
 • Your official high school transcript or GED certificate (required for all applicants)
 • Your official college transcripts (sent directly from the college or university)
 • Recommendation letters (2)
 • Official TOEFL, IELTS, or DET scores, if applicable*

STEP 4 You will receive a Hometest on January 9, 2023, which you must complete and submit by February 6, 2023.

We highly recommend adding admissions@cooper.edu to your email address book in order to prevent important emails [like your Hometest and admission decision!] from going to spam.

The Hometest will include portfolio requirements. All portfolio work should be submitted with the Hometest.

Please follow all instructions carefully.

STEP 5 You will receive an admission decision by April 1, 2023.

*Undergraduate applicants whose native language is not English and who have not graduated from a secondary school in a country with English as the official medium of instruction are required to take one the below exams. TOEFL [Test of English as a Foreign Language], IELTS [International English Language Testing System], or DET [Duolingo English Testing] Scores per the below requirements. Scores must be submitted directly by the testing service to admissions@cooper.edu.

**Transfer applicants typically have fewer than 60 credits at another institution. An accepted applicant who has previously earned a baccalaureate degree in a discipline other than art will be treated as a transfer student for purposes of evaluating completion of degree requirements and length of time allotted at The Cooper Union to complete the B.F.A.
ALBERT NERKEN
SCHOOL OF ENGINEERING

Undergraduate/First Year

EARLY DECISION
If The Cooper Union is your first choice, you may consider applying early decision. If admitted via early decision you must accept our offer and withdraw your other college applications. See below for instructions on regular decision.

STEP 1 Submit your application online by November 1, 2022.

Please Note: Applicants are required to have studied chemistry, physics and calculus.

STEP 2 You will receive a confirmation email.

STEP 3 You will have to prepare and submit by November 1, 2022:
- Your official high school transcript or GED certificate (required for all applicants)
- Any official college transcripts (sent directly from the college or university)
- 2–3 Letters of Recommendation, with at least one from a STEM course instructor
- Official TOEFL, IELTS, or DET scores, if applicable*

Please respond to all questions in the writing section of The Common Application. We read these thoroughly and ask that you be thoughtful in your responses.

Submit all application materials through the Common Application. If necessary, you may email materials to us at admissions@cooper.edu, though this is not the preferred method.

STEP 4 You will receive an admission decision by December 15, 2022.

STEP 5 Candidate reply date is January 15, 2023.
REGULAR DECISION

STEP 1 Submit your application online by January 5, 2023.

Please Note: Applicants are required to have studied chemistry, physics and calculus.

STEP 2 You will receive a confirmation email from the Office of Admissions.

STEP 3 You will have to prepare and submit the following by January 5, 2023:

• Your official high school transcript or GED certificate (required for all applicants)
• Any official college transcripts (sent directly from the college or university)
• 2–3 Letters of Recommendation, with at least one from a STEM course instructor
• Official TOEFL, IELTS, or DET scores, if applicable*

Please respond to all questions in the writing section of The Common Application. We read these thoroughly and ask that you be thoughtful in your responses.

Submit all application materials through the Common Application. If necessary, you may email materials to admissions@cooper.edu, though this is not the preferred method.

STEP 4 You will receive an admission decision by April 1, 2023.

*Undergraduate applicants whose native language is not English and who have not graduated from a secondary school in a country with English as the official medium of instruction are required to take one of the below exams. (Test of English as a Foreign Language), IELTS (International English Language Testing System), or DET (Duolingo English Testing) Scores per the below requirements. Scores must be submitted directly by the testing service to admissions@cooper.edu.

Admission After Three Years of High School Candidates of exceptional merit may be considered for admission after completion of three years of high school. Engineering applicants must have excellent high school averages and test scores. Art and architecture applicants must have excellent high school records and exceptional ability. A recommendation from the high school principal, at least one recommendation from a teacher and an interview will be required. In accordance with the regulations of individual states, a student may or may not be eligible to receive an Equivalency Diploma after completion of a specific number of credits in appropriate subject areas at The Cooper Union. It is the responsibility of the applicant to investigate his or her state regulations in this regard.
Transfer/Albert Nerken School of Engineering

Preference for transfer is given to those applicants that have completed coursework similar to all of Cooper Union’s first year program at another accredited college. The Transfer application can be found on The Cooper Union website.

STEP 1 Submit your application online by January 5, 2023.

STEP 2 You will receive a confirmation email from the Office of Admissions.

STEP 3 You will have to prepare and submit the following by January 5, 2023:

- Your official high school transcript or GED certificate (required for all applicants)
- Your official college transcripts (sent directly from the college or university)
- 2–3 Letters of Recommendation, with at least one from a STEM instructor
- Official TOEFL, IELTS, or DET scores, if applicable*

Submit all application materials through the application on The Cooper Union website. If necessary, you may email them to admissions@cooper.edu, though this is not the preferred method.

STEP 4 You will receive an admission decision by the end of April.

* Undergraduate applicants whose native language is not English and who have not graduated from a secondary school in a country with English as the official medium of instruction are required to take one of the below exams. (Test of English as a Foreign Language), IELTS (International English Language Testing System), or DET (Duolingo English Testing)
HIGH SCHOOL GRADUATION REQUIREMENTS

At The Cooper Union, each school has its own high school graduation requirements for applicants.

The Irwin S. Chanin School of Architecture

High school records must show graduation with a minimum of 19 units* before July 15th of the year for which admission is sought, with required and elective subjects as follows:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units Required for Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
</tr>
<tr>
<td>History and Social Studies</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (including Trigonometry, Algebra II and Pre-Calculus)</td>
<td>3</td>
</tr>
<tr>
<td>Science</td>
<td>3</td>
</tr>
<tr>
<td>Other Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Units Required</td>
<td>19</td>
</tr>
</tbody>
</table>

Calculus is a required first-year course for all architecture students. Entering first-year students must have completed Mathematics (including Trigonometry, Algebra II, and Pre-Calculus). Any student who has not completed Pre-Calculus in high school must do so during the summer before enrollment and must submit an official transcript documenting successful completion of the course.

School of Art

High school records must show graduation with a minimum of 16 units* before July 15th of the year for which admissions is sought, with required and elective subjects as follows:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units Required for Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
</tr>
<tr>
<td>History and Social Studies</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>1</td>
</tr>
<tr>
<td>Other Electives</td>
<td>8</td>
</tr>
<tr>
<td>Total Units Required</td>
<td>16</td>
</tr>
</tbody>
</table>
Students who apply while attending high school will be expected to supply transcripts of subjects studied during the first three years of high school (Grades 9, 10, and 11). High school graduates must supply the full four-year record. High school transcripts should be sent during the fall and winter months, but not later than January 18th if supporting a first-year application. Each candidate should make certain that the high school subjects required for his or her major are completed prior to graduation since The Cooper Union will not be able to verify his or her senior program until final transcripts arrive in June or July. This is too late to make up a missing required subject or to make plans for admission to another college. Students who have not fulfilled their application requirements may have their offer of admission rescinded.

Albert Nerken School of Engineering

High school records must show the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units Required for Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
</tr>
<tr>
<td>History and Social Studies</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics (including Calculus)</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>Other Electives</td>
<td>5-7</td>
</tr>
<tr>
<td>Total Units Required</td>
<td>17 minimum, 19 recommended</td>
</tr>
</tbody>
</table>

Students in high school will be expected to supply transcripts covering subjects taken during the first three years of high school (Grades 9, 10, and 11). High school graduates must supply the full four-year record. High school transcripts should be sent during the fall and winter months, but not later than January 18th if supporting a first-year application.

Each candidate should make certain that the high school subjects required for his or her major are completed prior to graduation since The Cooper Union will not be able to verify his or her senior program until final transcripts arrive in June or July. This is too late to make up a missing required subject or to make plans for admission to another college. Students who have not fulfilled their application requirements may have their offer of admission rescinded.

In the area of Mathematics, candidates may offer somewhat different patterns of preparation provided they will be ready for the intensive study of Calculus at college. Preparation beyond the listed minimum in Mathematics is highly recommended. College Board Advanced Placement (AP) Mathematics are suitable courses for such further preparation.

A unit represents a year’s study in a subject, with classes meeting at least four times a week in a secondary school.
INTERNATIONAL APPLICANTS

International students are those who do not hold U.S. citizenship or permanent residency.

The Cooper Union is proud to have a robust international community, comprising approximately 19% of our student body and representing more than 35 countries. Each year The Cooper Union welcomes international students from around the world to study in our undergraduate and graduate programs.

The mission of the International Student Services Office (ISSO) is to provide services and programs for the international community at The Cooper Union. This support includes advisement on immigration, visa matters, work permission, orientation, cultural adjustment, and general resources. ISSO supports the University’s overall internationalization and helps facilitate the integration and assimilation of international students into the Cooper Union community.

Financial Aid: International students are not eligible for Federal or State Financial Aid. However, they are eligible for the half-tuition scholarship and additional merit aid.

English Language Proficiency Requirement: Cooper Union does not require TOEFL, IELTS, or DET scores for applicants:
- Whose native language is English
- Who have attended 3 years of high school or more where English is the primary language of instruction
- Who have earned a four-year degree from a U.S. college/university or from a university where English is the primary language of instruction (minimum of three years attendance)

Everyone else is required to submit TOEFL (Test of English as a Foreign Language), IELTS (International English Language Testing System), or DET (Duolingo English Testing) Scores per the below requirements. Your scores must be submitted directly by the testing service to admissions@cooper.edu.

TOEFL (Test of English as a Foreign Language): A minimum score of 600 (paper-based test) or 100 (Internet-based test) is necessary for admission to The Cooper Union. Cooper Union accepts only TOEFL IBT® scores by test administration date(e.g. full test administration results for one sitting) and does not accept MyBest® scores. You may send multiple results for consideration.

IELTS (International English Language Testing System): A minimum score of 7.0 is necessary for admission to The Cooper Union.
DET (Duolingo English Test): A minimum score of 120 on the current DET (or 75 on the DET prior to July 2019) is necessary for admission to Cooper Union.

Make sure the name on your passport matches your name on the application, and on your language scores.

Required Documentation: All high school and college transcripts must be translated into English, notarized and sent to The Cooper Union.

Students planning to attend Cooper Union as an F-1 international student will need a Form I-20. To obtain a Form I-20 from Cooper Union, you will be required to submit an I-20 Request Form with supporting documents to International Student Services Office (ISSO). Please review next steps here.

Additional fees: International students are assessed a fee of $1,005 per semester.

In addition to the international student fee, please click here to review all costs of attendance.

TUITION AND FEES

Undergraduate Tuition

The cost of tuition at The Cooper Union for the 2022-2023 academic year is $44,550. The part time tuition per credit is $1,310 for 2022-2023 academic year. Part-time students will not receive any institutional aid including half-merit scholarship, tuition assistance, innovator, institutional grants, and scholarships.

Starting in the Fall of 2014, all students enrolling for the first time at Cooper Union receive a half-tuition scholarship currently worth $22,275 per year ($11,137.50 per semester). Additional financial aid is provided to eligible students to help cover tuition, housing, food, books, supplies etc. The amount of additional aid is based upon a student’s demonstrated financial need. Students must file a FAFSA to be considered for additional financial aid. Please note that Cooper Union offers merit scholarships to exceptional students. Also, Cooper Union uses a need-blind admissions process, meaning that a student’s ability to pay does not impact the admissions decisions.
Graduate Tuition

School of Architecture 2022-2023: The Master of Science in Architecture program is a three-semester program. All admitted students will be assessed tuition at the rate of $25,075 per semester.

School of Engineering 2022-2023: Students in the Master of Engineering program are charged $1,475 per credit; 30 credits total.

Fees and Refunds

PLEASE BE ADVISED THAT ALL FEES ARE SUBJECT TO CHANGE ANNUALLY WITHOUT PRIOR NOTICE.

A nonrefundable application fee of $75 is paid by all applicants to Cooper Union for admission. Cooper Union participates in the Common Application Fee Waiver program. Each student enrolled in a degree program at both the undergraduate and graduate level: mandatory, non-refundable registration fee of $1,135 per semester for the 2022-2023 academic year. Continuing Students must pay each semester’s student fee in accordance with the bill’s due date. All fees are subject to annual revision. Students who do not pay the required fee may have their registration canceled.

Summer Session 2023 (2022-23 academic year): We wish to provide clarity with respect to fees for the Summer Session. This summer’s mandatory, non-refundable registration fee is $568. This amount will be charged for all students regardless of the number of credits and type of class that the student enroll in.

Refund Process During the first month of the semester financial aid refunds are processed twice a week in order to meet the needs of our students. After the first month of the semester regular financial aid refunds are processed once a week in accordance to the Finance Department Institutional policy and procedure.

Direct Deposit All student financial aid or student account refund can only be processed through direct deposit. Click here for detailed direct deposit sign up instructions.

Withdrawal Fees Should a student choose to withdraw, tuition can be refunded. It is 100 percent refundable up to the 7th day of class, 50 percent refundable up to the 14th day of class and 25 percent refundable up to the 28th day of class. Thereafter, it is not refundable.
General Lab and Studio Materials Fee A general lab and studio materials fee of $175 per semester will be charged to each student’s account. This fee covers normal usage, “wear and tear,” and basic supplies for laboratory and studio projects. For new and continuing students, this fee is payable on acceptance of admission or semester and is non-refundable.

Student Residence Fees Students electing to live in Student Residence will be responsible for paying the regular housing fees. The fees for the 2021–22 academic year are $13,410 for a double (two students per bedroom) and $14,610 for a single (one student per bedroom). The fees cover residence for the fall and spring semesters and may be paid in two parts.

Refund Policy for Student Residence A refund of housing charges resulting from an approved request to cancel the housing agreement will be made in accordance with the following schedule: 100 percent of the total housing charges for the semester if the cancellation request is made prior to August 1 for the subsequent fall semester and December 1 for the subsequent spring semester; 65 percent if made by September 30 for the fall semester and January 31 for the spring; and 35 percent if made by October 31 for the fall and February 29 for the spring. No refunds will be made after these dates.

Students who are evicted from the Student Residence or whose Housing Agreements are terminated for violations of the terms of the Housing Agreement are not eligible for refunds.

Cooper Union Health Insurance It is a requirement that all matriculated students have health insurance coverage. The Cooper Union provides health insurance for all students through The Cooper Union Accident and Sickness plan. The cost of insurance will appear on every student’s billing statement. Students who are covered under their own or their parent’s insurance policy may choose to waive The Cooper Union Accident and Sickness plan. Please be advised that if you wish to waive the insurance, he insurance you provide must be currently active and will be subject to verification. To enroll or waiver in the health insurance plan, you must access The Cooper Union Accident and Sickness plan online at http://www.wellfleetstudent.com using their Cooper Union ID number.

If you do not complete health insurance waive process with the above insurance company by October 15, 2022, you will be responsible to all assigned health insurance charges. There will be no exceptions to this policy.
International Student Fee International Students (those who are non-citizens or who are not permanent residents) are responsible for an additional non-refundable fee of $1,005 per semester.

Graduation Fee A graduation fee of $250 is required of all students entering their first semester of their undergraduate/graduate senior year at The Cooper Union. This fee is payable upon registration for the senior year and is refundable if a student fails to meet graduation requirements that year.

Special Fees
A charge of $100 will be made for late payment of the student fee.
A charge of $25 will be made per occasion involving change of section or registration program.
A fee of $100 shall be incurred for late registration.
A bill payment plan fee of $50 per semester will be charged to your account at the time of payment plan enrollment.
The Cooper Union reserves the right to change its fees at any time.

Graduate Student Maintenance of Matriculation Fee The requirements for the Master of Engineering program must be completed within two years of admission to graduate status, except with the expressed consent of the Dean of Engineering. Requests for extension must be presented in writing to the Dean in the final semester of the second year. In addition, approval must be granted from the student’s thesis adviser. Master’s students who receive approval to extend their studies beyond two years will be assessed a maintenance of matriculation fee of $3,000 per semester.

Tuition/Housing Payment Plan Instructions Payment plans are available for students or tuition and housing fees. The tuition and housing fees can be paid in four installments. A $50 payment plan enrollment fee (per plan) will be added to your total bill. A $100 late payment fee will be assessed for each late payment. A $25 returned payment fee will be charged to your account.

Financial Aid Recipients You may elect to apply expected sources of financial aid and/or loans towards the tuition and housing fees. You are responsible for completing and submitting the required paperwork to the Financial Aid Office. Please contact the Financial Aid Office for more information. Students expecting outside scholarships may apply these amounts to the installment plan when the scholarship is received. International payments (any payments made from foreign accounts) may be made by: https://www.flywire.com/pay/cooper.
FACILITIES AND RESOURCES

The Cooper Union campus is comprised of five buildings at Manhattan’s Cooper Square, between Sixth and Ninth Streets and Third and Fourth Avenues.

The Foundation Building At the center of this educational complex is the Foundation Building, the original structure which was built under Peter Cooper’s supervision. Housed in the building are the Great Hall, The Cooper Union’s historic auditorium; The Irwin S. Chanin School of Architecture; much of the School of Art; the library; the Arthur A. Houghton Jr. Gallery, the Office of the President and Office Services (mail, photocopies). The building also includes the Architecture Archive, classrooms, shops and studios.

The building is open during the fall and spring semesters from 8 am to 2 am, Monday through Thursday; 8 am to midnight, Friday and Saturday; and noon to 2 am on Sunday. Hours may be extended during high-use periods such as the last two weeks of the semester. The School of Architecture office is open Monday through Friday, 9 am to 5 pm. The School of Art office is open from 8:30 am to 6 pm during the academic year. Shops, special labs, the computer studio and other facilities that require supervision are open on a more restricted basis; each facility posts its own hours.

A detailed schedule is available from the School of Art office.

During the summer months, the Foundation Building is open from 8 am to 6 pm Monday through Thursday; the administrative offices are open from 9 am to 5:15 pm Monday through Thursday; and all of the educational facilities are closed except to high school students who participate in the Saturday/Outreach Program and participants in the Typography Design Program.

41 Cooper Square houses the Albert Nerken School of Engineering, the Faculty of Humanities and Social Sciences, the Herb Lubalin Study Center of Design and Typography, 41 Cooper Gallery, the Frederick P. Rose Auditorium, the Jeannette Brooks Computer Center, and the Benjamin Menschel Civic Projects Lab. It also features studios for the School of Art; classrooms, laboratories, and lounges for all students; and the Hub, an information center for visitors and students to meet with members of the Office of Enrollment. The first academic building to achieve the LEED Platinum status, 41 Cooper Square provides all students of The Cooper Union with access to state-of-the-art tools to pursue creative and original research and design in the course of their learning.

30 Cooper Square The Business Office, Office of Communications, Alumni Affairs & Development, Public Programs, and Office of Human Resources are housed at 30 Cooper Square.

Student Residence The 29 Third Avenue Student Residence Hall makes it possible for students to live in a community and share a collegial approach to learning that will have a lasting impact on their adult and professional lives. Intended to provide a transition for new students from living at home to renting a private apartment, the 29 Third
Avenue Student Residence Hall opened its doors in September of 1992. The Student Residence Hall is located on the corner of Stuyvesant Street and Third Avenue.

The 29 Third Avenue Student Residence Hall offers apartment-style housing for approximately 170 students. Units range in size to accommodate three to five people, with the majority of the apartments being composed of two bedrooms, shared by four people. Each unit is composed of a bathroom, kitchen and bedrooms. The building amenities include a laundry room, the Menschel Room, 3A Student Reading Room, 3C Student Study Room and the Office of Student Affairs.

The building is staffed by the Director of Housing & Residential Education and eight resident assistants. In addition, there is a 24-hour security system, including security guards, closed-circuit cameras and alarm systems.

Due to space limitations, Cooper Union is unable to guarantee housing to any of its students. Cooper Union’s policy is to give housing preference to first-year students. Upperclass students will not be considered until all first-year applicants have been housed. Students should assume that on-campus housing will not be available after their first year.

Stuyvesant-Fish House The historic townhouse at 21 Stuyvesant Street, known as the Stuyvesant-Fish House, was gifted to the institution in the late 1990s. Renovated by Cooper Union architecture alumna Toshiko Mori, it serves as the president’s residence.

Benjamin Menschel Civic Projects Laboratory

Designed as an all-in-one classroom, workspace, and public showcase, the Benjamin Menschel Civic Projects Laboratory, which opened in 2021, is dedicated to multidisciplinary student projects aimed at civic-focused issues. The idea for the lab grew out of student interest in having a hybrid work and exhibition space in which to pursue project-oriented learning while engaging The Cooper Union’s surrounding East Village neighborhood and the broader New York City community.

The Civic Projects Lab can be viewed through large, street-level windows and entered from Third Avenue where it anchors one corner of 41 Cooper Square. The design for the lab is organized around three different zones: a meeting space with a flexible configuration of chairs and tables, an area with standing workbenches for collaborative production, and a presentation area made up of a pinup wall with movable sections.

Center for Career Development

The mission of the Center for Career Development is to advance personal, educational and professional growth. The Career Center complements The Cooper Union’s academically centered tradition by preparing students to make a successful transition from studying with a distinguished and creative faculty to applying their knowledge and skills to a professional practice. The Career Center facilitates student inquiry into relevant applications of the education they have received at the institution, strengthening The Cooper Union’s historic commitment to science and art.
Continuing Education offers to the general public and the Cooper Union community a wide range of lectures, symposia, readings, performances and evening courses. These public programs comprise an effort to extend the creative and intellectual life of the institution into the larger community, as well as to complement Cooper’s undergraduate offerings. Many of the programs, including courses, are free to Cooper Union students, faculty and staff.

The Cooper Union Library For over 160 years, The Cooper Union Library has served the creative, intellectual, scientific and technical work of The Cooper Union community and beyond. The collections and services are designed to inform and enrich the college’s teaching, learning, research and professional practice. The general collections support Cooper Union’s specialized curriculum in art, architecture and engineering, as well as the humanities and social sciences. An increasing portion of the collection is made up of digital resources including databases, eBooks, eJournals, digital images, streaming media, and more.

The Cooper Union Library’s membership in the Research Library Association of South Manhattan give students, faculty and staff physical access to the nearby libraries of New York University, The New School, and the New York School of Interior Design. These libraries share an online catalog and reciprocal borrowing privileges. The Library’s membership in PALCI (Partnership for Academic Library Collaboration and Innovation) extends access to over 70 academic libraries in the region, including the University of Pennsylvania, Temple University, Rutgers University, and many more.

Librarians and staff are available to assist via chat, e-mail, phone, and in person.

The Great Hall of The Cooper Union has stood for over a century and a half as a bastion of free speech and a witness to the flow of American history and ideas. When the hall opened in 1858, more than a year in advance of the completion of the institution, it quickly became a mecca for all interested in serious discussion and debate of the vital issues of the day. It has continued in that role ever since.

The Hub (41 Cooper Square, ground floor) brings together the offices of Admissions, Student Financial Services, the Bursar, the Registrar, and International Student Services. The central location lets students find answers to all their questions related to admission requirements, scholarships, financial aid, and registration.

IDC Foundation Art, Architecture, Construction, and Engineering Lab
An interdisciplinary and state-of-the-art maker space, the IDC Foundation Art, Architecture, Construction, and Engineering Lab (AACE) Lab offers a wide variety of advanced digital fabrication tools and resources to students from all three schools of The Cooper Union. The AACE Lab features over 30 pieces of digital fabrication equipment,
including laser cutters, CNC routers, 3D printers, 3D scanners, a waterjet cutting machine, a vinyl cutter, an embroidery machine, a wire bending machine, and a vacuum-forming machine, in addition to supplementary tools and instructional resources.

Located on the fourth floor of the Foundation Building, the AACE Lab is housed in a renovated space designed by Samuel Anderson Architects, a firm led by Cooper alumnus and adjunct professor of architecture Sam Anderson. Students can access the lab for in-person use as well as via self-service resources and through a variety of standalone and in-class workshops offered by the facility’s professional staff.

SCHOOL OF ARCHITECTURE

The main spaces of the School of Architecture are housed primarily on the second, third and seventh floors of the Foundation Building, a National Historic Landmark widely referred to as one of New York City’s great monuments.

When The Cooper Union opened in New York City in 1859, the physical structure of the original building closely followed Peter Cooper’s educational philosophy. The five-story Foundation Building was designed by Frederick A. Petersen in the Renaissance Revival style, with studios and classrooms above a first floor of stores open to the public. In 1890, Leopold Cyrus W. Eidlitz added studio skylights and additional floors to the building. The building exemplified not only Peter Cooper’s dedication to social mobility through education, but his recognition of the power of technology and the importance of art and design. The tallest building in New York City in 1859, this first “skyscraper” was also the first building to be designed with a rolled iron I-beam infrastructure and the first to house an elevator shaft top to bottom, although the passenger car and conveyance system for such a shaft had not yet been developed.

In 1974, John Q. Hejduk, the first Dean of the School of Architecture, completely redesigned the interior of the Foundation Building, aligning the program of the building with the pedagogy of the schools, while leaving the exterior largely unchanged. In the words of Ada Louise Huxtable, the renovation was “the best of both worlds,” with the “Renaissance shell intact” and the “clarity and detail of the consciously sophisticated modernism of the interior” attesting to “the creative continuity of history and art.” The brownstone exterior of the Foundation Building was extensively restored under the direction of Platt Byard Dovell between 1999 and 2002.

The Studios All students in the School of Architecture are provided workspace on the third floor within a shared studio. With the first through fourth years sharing a single large studio and the fifth-year thesis class and graduate students in smaller studio spaces, a unique environment fostering cross-fertilization between classes and
individual students is maintained. Students are provided with individual studio workspace with individual and shared tables for drawing, study, reference, model building, etc. For the health and well-being of students, the school does not support the principle or practice of continual 24-hour studio access. Studios are generally open Monday–Thursday 7:30 am–2 am, Friday 7:30 am–midnight, Saturday 8 am–midnight, and Sunday noon–2 am.

Computer Studio The School of Architecture Computer Studio on the seventh floor of the Foundation Building is specifically intended to support a design curriculum that recognizes the use of computing as an instrument of investigation and practice and which urges students to explore its formal and cultural implications. The facility utilizes both Macintosh and Dell Precision PCs (including high-end multiple-processor rendering stations), scanning and printing capabilities and two large-format plotters. Software includes an array of imaging, drawing, drafting and 3D modeling and rendering programs. This facility is open to all students of The Cooper Union. Considered integral to the activities of the design studio, the computer studio is generally open whenever the design studios are open, giving students access an average of 17 hours a day. A student monitor trained to assist in the effective use of the facility and to do simple troubleshooting on the hardware is present whenever the center is open.

The School of Architecture Computer Studio also supports a 3D printer and laser-cutter; other three-dimensional output capabilities in The Cooper Union include a laser-cutter in the School of Art and CNC and rapid prototype machines in the School of Engineering. Computing facilities designed to serve the specific needs of the Schools of Art and Engineering are open for use by students of the School of Architecture.

Lecture Room A small auditorium on the third floor is used for lecture classes and invited lecturers. Special lectures are open to all interested Cooper Union students.

Art & Architecture Shop An outstanding all-college sculpture shop is located on the fourth floor. Integral to both the program and pedagogy of the School of Architecture, the art and architecture shop is equipped for projects in wood, metal, plastics, plaster and clay, and includes a bronze casting foundry. For a complete description of the shop facility, please refer to the School of Art section (page 56).

Study Collection The School of Architecture has fostered the growth of a non-circulating Study Collection of books and periodicals that are not otherwise accessible through the Cooper Union library system, sometimes including rare or limited edition items, often on loan from private collections. Students make use of the room for quiet reading and study. The room is also used for seminar classes and meetings.

School of Architecture Archive The School of Architecture Archive is responsible for the ongoing collection, documentation and storage of student work, and now has a record of student work produced at the school since the 1930s. This provides an invaluable record of the pedagogy of the school that can be used for exhibitions,
publications and student research. In addition, the Archive’s Blueprint Collection, Lantern Slides, New York Postcard Collection, Stanley Prowler Slide Collection, New York City Waterfront Archive, Limited Edition Books and rare books are resources available for use by students and faculty for research and study. The Archive also manages the loan of analog and digital video cameras as well as other photographic equipment for student use on class projects.

Arthur A. Houghton Jr. Gallery Named for Arthur A. Houghton Jr., former trustee and chairman of The Cooper Union, this 1800 square-foot gallery supports the pedagogy of the School of Architecture through public exhibitions and events. Over the years, the works of architects, photographers, painters, builders and faculty and students of the school have been exhibited, drawing viewers from schools of architecture and the wider professional communities as well as the public at large. The School of Architecture Archive works with other institutions to present jointly sponsored exhibitions, or will curate, design and install original exhibitions. Recent exhibitions presented by the school include Drawing from the Archive: Analysis as Design (with additional support from the Graham Foundation for Advanced Studies in the Fine Arts), Drawing Ambience: Alvin Boyarsky and the Architectural Association [co-organized by Museum of Art Rhode Island School of Design, Providence and the Mildred Lane Kemper Art Museum at Washington University in St. Louis, with additional support from the Graham Foundation for Advanced Studies in the Fine Arts], Paul Rudolph: Lower Manhattan Expressway [presented with The Drawing Center, New York], Lessons from Modernism [presented with the Institute for Sustainable Design, with generous support from the Stavros Niarchos Foundation], Massimo Scolari: The Representation of Architecture, 1967-2012 (organized by the Yale School of Architecture with additional support provided by the Graham Foundation for Advanced Studies in the Fine Arts, the Turner Foundation, and by Elise Jaffe + Jeffrey Brown), Bernhard Hoesli: Collages, Alternativas/Alternatives XIII Spanish Biennial of Architecture and Urbanism [co-presented with the Spanish Biennial of Architecture and Urbanism and presented in association with Archtober, Architecture and Design Month New York City, October 2016] and John Hejduk Works/Jan Palach Memorial [installation presented in conjunction with the New York City Department of Transportation’s Artventions Program].

Personal Laptops The School of Architecture Computer Studio as well as the Cooper Union Computer Center at 41 Cooper Square are open to all architecture students and are equipped with all of the hardware and software necessary for their work and study. We recommend that students who wish to purchase their own laptop computers complete their first year of study before making a purchase in order to fully test a range of programs and platforms. Current students have selected a variety of laptop models in both Mac and PC platforms for individual use. The Cooper Union
assumes no liability for personal laptops. Students who use/bring their personal laptops to school are solely responsible for the safety and security of their equipment and are strongly advised to secure their laptops in their lockers when not in use.

Communication Each new student is assigned a Cooper Union email address during Orientation. It is the responsibility of all students to actively and regularly check and use their Cooper Union email in order to receive, in a timely manner, official school announcements, important information about registration, messages of general interest about events, exhibitions and programs, safety updates, policy notifications, etc. As The Cooper Union continues its transition to an online administrative system, linked solely to The Cooper Union email address, this line of communication becomes even more vital. In addition, wireless internet access is available throughout The Cooper Union and can only be accessed via a Cooper Union email address and password.

SCHOOL OF ART

The School of Art is primarily housed in the 1859 landmark Foundation Building. Additional classrooms and student studio spaces, the Media Lab, the Herb Lubalin Study Center, and the 41 Cooper Gallery are housed across the street at 41 Cooper Square. The studios, classrooms, shops, and labs of the School of Art offer complete facilities for a visual arts education. A professional staff of technical assistants is available in many of these facilities seven days a week to provide help and guidance to students in the School of Art, and to provide a healthy and safe working environment.

In the Foundation Building, skylight ceilings flood abundant natural daylight throughout a number of classrooms, workrooms and student studio spaces. Most studio classrooms are equipped with easels, model stands, palette tables, and sawhorse tables. Common workrooms are furnished with slop sinks, worktables and storage racks to accommodate the preparation and storage of artwork. Seminar classrooms provide seating for between fifteen and seventy five people. Four classrooms in the Foundation Building are fitted with digital projectors and sound and video connections. Two multimedia classrooms at 41 Cooper Square are equipped with high-definition projection teaching stations, and with Apple MacPros, which are connected to the Internet via T1 lines.

All students in their second, third, and fourth year in the School of Art, as well as exchange students, are provided with individual studio spaces. These studios are located on the second, fourth, and sixth floors of the Foundation Building, and on the fifth, sixth, and ninth floors of 41 Cooper Square. Each studio has pinup wall space and is set up with a desk and a lockable storage cabinet.
Technical Shops & Labs

Art and Architecture Sculpture Shop A large, all-college sculpture shop supports opportunities for production of a wide range of three-dimensional work. This facility, located on the fourth floor of the Foundation Building, is equipped with machinery for wood- and metal-working, mold-making, bronze casting and projects using wax, clay, plaster and some plastics.

Film, Video, Animation & Sound

Film Film students can borrow 16mm Bolex cameras with zoom or prime lenses, as well as a Canon Scoopic and Arri 16BL. Camera kits include light meters and complete instructions. Tripods, lighting kits and other support/grip equipment is also available. Film and developer is sold at the Checkout Office and students can hand-process it onsite or send it to a local lab.

The Film Lab has a custom-built 16mm HD transfer machine so that processed film can be converted to digital files, or edited on a Steenbeck flatbed editor. 16mm viewers, splicers and rewinds are also available. A JK optical printer is available for contact prints or optical special effects.

Video Video students have access to large-sensor DSLR cameras and professional camcorders with a range of prime and zoom lenses. GoPro action cameras and older formats are also available. Students can borrow fluid-head tripods, shoulder rigs, stabilizers and a variety of halogen and LED lighting kits. Grip equipment, gels, umbrellas and softboxes can be added to any light kit. Other equipment (monitors, speakers, projectors and media players) is also available for multi-media installations.

The Video Lab has eight Macintosh workstations with Adobe Premiere Pro, After Effects and Photoshop, Pro Tools and other audio and video software. Additional outboard equipment includes various analog and digital and audio and video decks, mixers and special effects devices. The video lab is networked and equipped with a video/data projector for instruction and viewing student work.

Animation Animation students have access to DSLR and 16mm cameras for image capture, as well as light tables, peg bars and animation stands for analog/cel animation, direct-on-film painting and stop-motion.

The Animation Lab has 10 Macintosh workstations and provides support for two- and three-dimensional animation. Additional hardware includes DSLR animation stands with Dragonframe stop-motion software, a digital rotoscope station, flatbed scanner, vocal isolation booth and various analog and digital audio/video decks. This lab also serves as a supplementary facility for students working with film, video and sound projects, has all of the same software and is networked and equipped with an HD video/data projector with surround sound for instruction and viewing student work.
Sound Students taking Sound classes have access to professional digital audio recorders, supported by a complete array of microphones including shotgun and stereo mics, wired and wireless lavaliere, binaural pairs, contact mics, and custom transducers. A dedicated sound editing room is equipped with surround mixing capabilities and a vocal isolation booth, Pro Tools and Reaper software.

Screening Room/Classroom Classes are primarily held in the Screening Room, a theater for large-screen projection of film and HD video with 5.1 surround sound. The projection booth is equipped for 16mm and Super 8 and offers flexible signal-routing with AV ties to the editing facilities. The room doubles as a shooting studio with a permanent green-screen and additional electric service for high wattage lighting.

Access Equipment and use of facilities is available to all students currently enrolled in a Film, Video, Animation or Sound class. Equipment can be reserved and checked out for 2 and 3 day periods. Students that have previously taken a class have limited access. A professional staff of technicians are continuously available during posted studio and checkout hours.

Photography Lab
The use of the photography lab and equipment is available to students currently enrolled in photo classes. Students who have taken photo previously, but are not currently enrolled, have limited access to facilities and cannot check out equipment.

The analog photography facilities include a spacious, well-ventilated black-and-white communal darkroom with 16 enlargers capable of printing 35mm to 4x5 inch negatives, a large black-and-white film processing area with automatic temperature controls, and a dedicated alternative-processes room with UV exposure units.

The digital photography lab includes 16 Macintosh workstations with a variety of professional grade Epson inkjet printers. There are numerous 8.5 x 11 inch Epson flatbed scanners and multiple Nikon film scanners. An additional advanced digital lab houses two Macintosh workstations, and a Hasselblad Flextight film scanner. Two large format printers are managed by staff, students enrolled in photo classes may request prints from the checkout window for a fee.

A well-equipped lighting studio provides space to photograph while using a wide range of light sources. A complete tethered capture system with a Macbook Pro is available for advanced photo students who have taken the studio lighting class. A variety of large and medium format film cameras are also available for checkout, as are a range of professional DSLR cameras. Knowledgeable technical assistance is on hand continuously during posted lab hours.
Printmaking Shop & Type Shop
A well-equipped and ventilated printmaking shop on the fifth floor of the Foundation Building accommodates intaglio, lithography, screen printing and relief printing processes and papermaking. The facility includes three lithography presses, three etching presses and four screen printing vacuum tables. There is a dedicated computer facility with two large format printers for digital imaging and pre-press photographic work. There are more than 100 stones for lithography and a collection of rollers for lithography, monotype, and surface rolling in etching. The paper mill is complete with beater, a 75-ton hydraulic press, vats and the capability for both Western and Japanese papermaking.

A professionally-staffed and well-lit letterpress studio is available to all students. It is equipped with five Vandercook cylinder presses, one tabletop pilot platen press, polymer bases, a foil stamping machine, book presses, binding hand tools, a polymer plate maker, and well-organized foundry and wood type, as well as all necessary spacing material and composing equipment. Skilled technical assistants are available to help students execute all manner of printing and binding projects.

Painting Offices & Art Studios
The Painting Office is a resource on painting and painting techniques and is staffed by knowledgable technicians who provide canvas stretching and priming demonstrations and advise on health and safety protocols when working with oil paints and solvents.

Gesso rooms located on the 6th floor of the Foundation Building and 9th floor of 41 Cooper square have large work tables where students can stretch and prime canvases. These areas include slop sinks, a brush washer, large painting racks, storage for paintings and works on paper in painting racks and flat files. High ventilation rooms are also located on the 4th floor of the Foundation Building and 9th floor of 41 Cooper Square.

The Painting Office assigns and maintains all studios for School of Art students and provides a number of supplies gratis and for purchase, and has an inventory of tools for loan.

Herb Lubalin Study Center of Design & Typography
The Herb Lubalin Study Center of Design and Typography in the School of Art was founded in 1985 by The Cooper Union and friends of the late Herb Lubalin. Its mission is to focus on the preservation of design history through its core collection of the work of Herb Lubalin and extensive library and archive of design ephemera. The Study Center and its archive are important central resources for the students and faculty as well as the professional and general public. All materials are fully available by appointment and are regularly highlighted through center’s public exhibitions and lecture programming.
Media Lab
The Media Lab is a multimedia digital workspace and output facility. It offers access to a wide array of software, printing, scanning, and professional support services for all Cooper Union student, faculty, and staff.

The Media Lab, a part of the Department of Information Technology, is located on the eighth floor of 41 Cooper Square in rooms 804, 805, and 806, comprising two classrooms and an open workspace. Each room features Apple iMac workstation running Mac OS and Windows platforms, laser printers, and high-resolution flatbed scanners. Room 805 features large-format plotters and archival printers with a wide range of media options, large-format scanning, and a shared [cutting/work] table. All Media Lab computers feature a variety of software for graphic, web, and UX design (Adobe Creative Cloud, Sketch, Atom), video and animation (Adobe After Effects and Premiere), and 3D design (AutoCAD, Rhino, Maya, Unity). Students will have access to Media Lab resources throughout their time at Cooper Union.

Academic Support Technicians (AST) are available at all times to help students, faculty, and staff use the Media Lab’s resources in the creation of their projects and class materials. ASTs provide extensive technical knowledge and professional experience with the Media Lab’s resources, and can provide assistance with everything from print to video animation projects.

SCHOOL OF ENGINEERING

The Brooks Computer Center is available to all students and faculty. It provides a centralized administration and technological support for all academic computing needs, and allows students to take advantage of rapidly emerging hardware and software technologies. The center maintains an ample supply of computers of all major types—Intel™ based machines, Apple Macintosh™, Sun Microsystems™, IBM™ are examples. Workstations are concentrated in computer classrooms, offices, laboratories, the residence hall and special centers.

The Department of Information Technology provides a wired and wireless network resulting in a rich and reliable computing environment. It is locally accessible through the intranet, which connects all but specialized stand-alone systems. Students have access to all the major operating systems such as the varieties of Microsoft Windows™, Solaris™, Linux™ and Mac/OS.™

The Department of Information Technology has both formal classroom instructional facilities and informal drop-in accommodations. Currently, there exist no restrictions or charges for computer time and availability is widespread.

A full complement of applications, programming languages and Internet tools are available. Multimedia hardware includes audio/video capture and output, print and film scanners, digital cameras, CD burners and large-format color plotters.
Data communications with the outside community are maintained via multiple dedicated high-speed Internet connections. Students and faculty have access to software packages and programming languages on the local network and can download content from all Internet sites worldwide. Students are expected to pay careful attention to copyright and ethical uses of the Internet and to conduct themselves professionally at all times.

The Engineering Student Success Center fulfills a variety of academic purposes: it provides a space for ARC tutoring (math, chemistry, physics, and computer science) and proctoring. The Center also hosts workshops for students on a host of subjects, from the specifics of registration to improving study habits. Professors and students, as well as professional societies, use the Center as a meeting space.

Maurice Kanbar Center For Biomedical Engineering

The Maurice Kanbar Center for Biomedical Engineering is open to all Cooper Union faculty and students working on bioengineering projects requiring equipment and space for tissue culture, genetic engineering, biomechanics and related research. Faculty that are currently using the facility are pursuing groundbreaking biomedical research in such fields as biomedical devices, tissue engineering, obstructive sleep apnea biomechanics also collaborating with several major New York City-based hospitals. The Kanbar Center continues to provide space for undergraduate teams participating in the international genetically engineered competition (iGEM) during the summer, as well as space for courses that offer a biological laboratory component.

Chemical Engineering

- **Unit Operations Lab** The Unit Operations Laboratory provides chemical engineering students the opportunity to observe, analyze and apply their engineering knowledge and training to the operation of equipment and processes commonly found in many chemical industries. In 1922, Arthur D. Little, former President of both the American Institute of Chemical Engineers (AIChE) and the American Chemical Society (ACS) stated:

 “Chemical engineering... as distinguished from the aggregate number of subjects comprised in courses of that name, is not a composite of chemistry and mechanical and civil engineering, but a science of itself, the basis of which is those unit operations which in their proper sequence and coordination constitute a chemical process as conducted on the industrial scale.”

Throughout their undergraduate education at The Cooper Union, students are exposed to various unit operations in their coursework. During their senior year, students take a two-semester laboratory sequence in which they are given hands-on exposure to ten different unit operations. This complements their training as chemical engineers and provides intensive experiences in rigorous experimental approaches, analysis and safe operating procedures.
Civil Engineering

Materials & Structures Lab This facility is maintained to meet the program’s laboratory needs in solid mechanics, properties of engineering materials, structural engineering, study of dynamic response, and concrete technology. Professor Cosmas Tzavelis is responsible for the development, direction, and operation of this laboratory. This laboratory is used in CE 121 and CE 361. The laboratory is also used in CE 369, and by master’s students for their research. The 2,400 sq. ft. facility has the following capability:

- This laboratory houses the MTS 810 System that is capable of performing a wide variety of standard materials tests. The system consists of the following major components: load frame and actuator with a maximum capacity of 100 KN or 22,000 lbs., hydraulic power supply, microconsole (command post), microprofiler (programming post), A/D Boards, computer/printer and software, oscilloscope and accessories (e.g., grips, extensometers, etc.). The newly acquired MTS 793 Control software is available to perform tension tests, compression tests and low and high cycle fatigue tests.
- Linear and rotary actuators that operate in conjunction with MTS 810 system but they provide additional flexibility in several areas. For example, the linear actuator permits a larger test bed for full-scale or proportional structural applications. In addition, the linear actuator has swivel capability, so that it can be positioned for horizontal, inclined or vertical load applications. The rotary actuator permits application of programmable dynamic loads to a specimen in torsion.
- A universal testing machine with capacity of 120,000lb is available for a full range of tension, compression, bending, and buckling tests.
- Students can use a complete range of strain gage instrumentation for the measurement and analysis of strain and stress in scale models or full-scale structures.
- A vibration table for the dynamic excitation of beams or framed skeletal structural models is available for student use. Capabilities include the determination of amplitude and frequency and some vibration control.
- A large test bed for heavy loading of structural systems and hydraulic loading frames are available for structural testing.
- There is also a separate 400 sqft concrete mixing and casting room and another separate humidity and temperature controlled curing room for concrete.

The following acquisitions were made in this laboratory in the last 3 years:
- MTS Flex Test Model 40 Controller Hardware. It provides real-time closed-loop control, with transducer conditioning and function generation to drive our existing servo-actuators.
- MTS Series 793 Control Software. A test design application that allows you to create monotonic and cyclic tests and to acquire data.
- A computer workstation that runs MTS controller applications.

Geotechnical Laboratory This facility is maintained to meet the program’s needs in soil mechanics, foundation engineering and specialized geotechnical studies such as soil stabilization, etc. Professor Vito Guido is responsible for the development, direction and operation of this laboratory. This laboratory is used in CE131, CE361, CE369 and by master’s students for their research. It contains the following major items of equipment:
 - Two tri-axial/CBR/unconfined compression machines for the confined strength determination of soil samples. Confined pressures up to 100 psi can be achieved with this equipment
 - High and low range consolidation units with the capability of testing samples from 2.5 to 4.4 inches in diameter – several units are available in the laboratory for simultaneous student use
 - Complete set of equipment to perform the California Bearing Ratio Test
 - Constant head and variable head permeability equipment
 - Relative density set, including a vibrating table
 - Equipment for determining the direct shear strength of soil samples

The following acquisitions were made in the last 6 years:
- One Karol-Warner Triaxial/CBR/UC load frame, Model No. 7611, load capacity 10,000 lb
- One Karol-Warner Direct Shear Machine, Model No. 2001, load capacity 15,000 lb
- Four double wall laboratory ovens
- One 2,500 lb load ring calibrated in tension
- One 1,000 lb load ring calibrated in tension
- Two high vacuum pumps
- Two vacuum gages 0-760 mm Hg
- Four plastic limit plates
- Ohaus Explorer Pro Precision Top loading balance, 610g capacity, 0.01 g readability
- Tyson tubing, various sizes
- Stainless steel work bench with back splash 36 in x 24 in.

Hydraulics This facility is maintained to meet the program’s laboratory needs in fluid mechanics, hydraulic engineering, ocean engineering and groundwater hydrology. Specialized capabilities include: salinity intrusion measurement, dispersion and thermal plumes, and precise measurement of a complete range of flow parameters. Professor Joseph Cataldo is responsible for the development, direction and operation of this laboratory. This laboratory is used in CE142, CE361, CE369, and by master’s students for their research. It contains the following major items of equipment:
• Large flume, moving cradle, and wave-generation system
• Small flume for open channel flow experimentation
• Rotameters for flow measurement
• Venturimeters and weighing tanks
• A model lake, thermistors, specialized photography equipment, and PC’s
• Holding tank, jet and velocity meters (hotwire)
• A laser anemometer used to determine velocity flow field patterns
• The scope of this laboratory has been enlarged to include green roof experiment, energy generation and improvement of flow pattern studies in both the lake and jet experiments.

A green roof consisting of grass, soil and geotextile layers was studied in the hydraulic laboratory. This roof was 4 x 2 feet with a 4 inch roof covering. A bare control roof with the same dimensions was also studied and compared to the green roof. A rain piping system supplied heated and cold water to the two roofs. Infrared photographs were taken of the roof as the simulated rain ran off both inclined roofs. Temperatures were measured by thermistors placed along the roofs at different positions. The discharge from the green roof showed larger temperature deviations compared to the control roof.

A grid system was devised to photograph the patterns existing from the jet into an ambient wave in the large flume. The jet Reynolds number, wave amplitudes and frequencies were varied to study the water jet interaction. The dyed jet clearly is distorted by the wave and lags the waves maximum and minimum amplitudes. These experiments can be used to determine pollution mixing in tidal flow. Entrainment experiments in a buoyant flume were studied in the lake. By placing dye in the ambient receiving water and tracer particles, the movement of the flume and ambient water was photographed. The Densimetric Fraude number (F) of the discharge was varied by changing the temperature of the discharge. There were over 400 experiments conducted at seven different F to study the rate of entrained ambient water into the heated flume. A linear distribution was determined to exist for the value of the entrainment velocity as related to the location and F.

During the past 5 years, a series of experiments to generate energy in a stream/river environment have been conducted in the 27 foot flume. By confining the flow and introducing a downstream sill the flow will drop rapidly from a normal depth to a depth below the critical flow. This conversion from upstream pressure head to kinetic head is captured by a cross axis turbine. The energy was measured at the downstream contracted flow immediately downstream of the sill where the velocity is at a maximum. The energy is measured and recorded. Values as high as 20 watts have been measured in this flume.
The undergraduate Civil Engineering students conduct a series of hydraulic experiments in the hydraulic laboratory as a required element of CE 142 Water Resources Engineering. The students conduct experiments in pipe flow, the venture meter, turbulent/laminar flow, the hydraulic jump and pressure on gates. They determine velocities in the channel by the use of a pitot tube and construct flow nets around the gate. The students also conduct flow measurements in the laboratory jet experiment and trace the movement of a thermal plume in the lake model by the use of hot wire and laser anemometers, thermistors and dye trace photography. The thermal plume characteristics and measured in the new 14 feet long by 12 feet wide tank. This tank is equipped with thermistors to measure water and plume temperatures, hot wire anemometers to measure the water velocities, rotometers to measure inlet flows, an underwater camera to photograph water flow/dye patterns and an overhead camera to photograph streak lines. Over 60 probes can be sampled in less than one second and stored on the laboratory computer. A new laser (fiber optics) is being used to determine velocities in a neutrally buoyant jet. The position is varied in the X, Y, Z directions across the jet to study the jet velocities and re-circulations of ambient water and is recorded and processed in the computer. A hot wire anemometer and dye streak lines are also used to determine the jets dynamic behavior. The location of each data points can also be determined by the use of an X, Y, Z PM-counter (Mitritoyo).

Environmental Laboratory This facility is maintained to meet the program’s needs in water and wastewater analysis, soil analysis, environmental engineering, hazardous waste analysis and treatment. Professor Constantine Yapijakis is responsible for the development, direction and operation of this laboratory. This laboratory is used in CE 141, CE363, CE369 and by master’s students for their research.

The lab contains the following major items of equipment:

- Instrumentation for the analysis of basic water parameters such as color, turbidity, dissolved oxygen and chemical parameters
- Instrumentation for the analysis of basic wastewater parameters such as BOD, COD, nitrates, phosphates, and organic nitrogen.
- Bench scale unit operations such as: filtration, flocculation, activated carbon, activated sludge, and enhanced solar photo-oxidation
- HACH COD Reactors and HACH Manometric BOD apparatuses
- HACH DO Meter with 50 ft. probe and bottle probe
- Azur Corp. dedicated spectrophotometer, single sample analysis for BOD, COD, solids, nitrates, sugars and surfactants
- Two Investigator’s Aids (Model 850) for air pollution (hydrocarbon) analysis
- Hand-held instruments for air pollution analysis (VOC, CO, CO2, NOx)
- OHMNICRON Corp. immunoassay analyzer for pesticides, PCB, etc.
- Soil analyzer for TPH
• Two soil quality parameter analysis kits
• One water quality analysis kit
• Three dedicated ion analyzers for water samples
• A Challenge Environmental respirometer for aerobic and anaerobic waste treatability studies
• Programmable SIGMA sampler

Concrete Lab
The concrete lab is maintained to meet the program’s needs for mix design, pouring, curing and testing of concrete specimens and members. The lab has the capability to meet the special concrete mixing requirements for high-strength concrete using super-plasticizers or other additives. The Materials and Structures Lab is used for the testing of concrete specimens and members prepared in the Concrete Lab.

Electrical Engineering
With funding from the Keck Foundation, an Integrated Circuit Engineering laboratory was established in 1994 with state-of-the-art computer-aided design tools, computer platforms and their peripherals for the design of Very Large Scale Integration (VLSI) circuits. The ICE lab is used by junior Signal Processing and Electronics track electrical engineering students taking the VLSI design course. It features twelve workstations running the CentOS distribution of Linux intended primarily for use with Cadence, HSpice, Agilix, and other circuit and IC design software.

microLab
Usually written μLab or uLab, the microLab is an electrical engineering computer lab used by sophomores and juniors. It is a general-purpose facility for completing group assignments and for working on computer-related projects. Continuing Education classes as well as some graduate courses are taught in this facility. Among the resources available:
• 11 Dual Boot computers running Windows 10/Debian distribution of Linux for research, Matlab, etc.
• Workbenches and laptop stations for student use
• The μLab also houses most of the server and network hardware for the EE department; the μLab staff is responsible for maintenance of the network, technical aspects of the website, and hardware maintenance in the μLab, ICE Lab, Junior Lab, and Comm Lab (S*ProCom2).

One of the focuses of the μLab is encouraging independent student projects in electrical and computing engineering, as no other facility currently supports such endeavors. Examples of the successful projects constructed or under construction in the μLab include the aforementioned audio setup, and sms-controlled doorlock restricting access to the network hardware and server room, and a distributed computing cluster currently used for experimenting with self-evolving neural networks.
The Center for Signal Processing, Communications and Computer Engineering Research (S*ProCom²) S*ProCom² is a research center at The Cooper Union dedicated to cutting edge research in Signal Processing, Communications, and Computer Engineering. The center offers undergraduates the opportunity to conduct full-scale research projects that reflect the complexity and rigor of their education at Cooper. Many of these projects are continued at the graduate level.

Mechanical Engineering

AutoLab utilities Starting as early as their freshman year, Cooper Union mechanical engineers are introduced to the concepts of energy and propulsion in the ‘AutoLab’. One section of the interdisciplinary freshman design course produces new concepts to advance the Formula Electric racecar, which is concurrently developed alongside the FSAE vehicle, its gasoline equivalent. The Experimentation portion of this laboratory is used primarily by students in their junior year in ME 160 where they learn how to identify, procure, and implement the instruments and data acquisition capabilities for a research project. During their senior year, several students elect to perform their design project on a test stand that already exists in this lab or that would ultimately become part of the curriculum taught here.

A combustion and propulsion test cell contains a 300-hp eddy current dynamometer linked to either the FSAE engine or a DC motor/battery-electric powertrain. A custom-built 7-hp AC dynamometer allows students to research the combustion stability limits of a homogeneous charge compression ignition engine. In this lab, students get the chance to disassemble, analyze, and reassemble a series of Briggs & Stratton engines; a small gas turbine engine has also been under development for several years. Fundamental combustion studies are performed in fume hoods to determine the effects of fuel-air flow rate and equivalence ratio on laminar flame speed. A research engine outfitted with a quartz cylinder liner gives students the ability to watch the combustion process of a running engine while taking in-cylinder pressure data in real-time.

Junior mechanical engineers work on an AeroLab Educational Wind Tunnel, which has currently be outfitted with a laser particle image velocimeter (through an NSF Grant) to learn about lift, drag, dimensional analysis, and flow visualization. Using strain gauges and dial micrometers, students analyze the stress and strain experienced by a cantilever beam at varying tip deflections. A sump pump experiment and a bench-scale DC motor dynamometer illustrate energy conversion principles taught in thermodynamics, fluid mechanics, and electrical engineering courses. A Carrier refrigeration unit is operated with varying expansion valve designs and cooling rates on the condenser and evaporator to reinforce the concepts of enthalpy, entropy, phase change, and the coefficient of performance. A compressible flow experiment using a pressure vessel and different exhaust nozzle designs teaches students about Mach numbers, unsteady flow, and entropy. Recent additions to the lab involve biomechanical
applications. First, a chronic intermittent hypoxia system which varied the oxygen concentration within a laboratory animal’s cage teaches students about mass balance, instrumentation, and control. Next, an air muscle experiment is under development which shows students how to use a novel actuator in a total knee replacement testing machine.

This shared space contains an expanding number of experiential modules used by students throughout their careers in the Mechanical Engineering Department.

Combustion A combustion and propulsion test cell contains a 300-hp eddy current dynamometer linked to either the FSAE engine or a DC motor/battery-electric powertrain. A custom-built 7-hp AC dynamometer allows students to research the combustion stability limits of a homogeneous charge compression ignition engine. In this lab, students get the chance to disassemble, analyze, and reassemble a series of Briggs & Stratton engines; a small gas turbine engine has also been under development for several years. Fundamental combustion studies are performed in fume hoods to determine the effects of fuel-air flow rate and equivalence ratio on laminar flame speed. A research engine outfitted with a quartz cylinder liner gives students the ability to watch the combustion process of a running engine while taking in-cylinder pressure data in real-time.

Dynamics and Control Lab The focus of the Dynamics and Control Lab is on the design of complex dynamical systems and methods for controlling such systems using feedback. Examples include autonomous drones and (self-stabilizing) boats. The lab is used regularly in the Engineering Design and Problem Solving course (EID101), and the Modern Control (ME451) courses. In addition, the lab is used to develop hands-on projects and demos that supplement courses (ME200, ME351). For example, a small drone is used to illustrate the design process for a feedback controller. The space is also used for research by Master students, independent research studies, and senior projects (ME393).

Laboratory for Energy Reclamation and Innovation The Laboratory for Energy Reclamation and Innovation [LERI] was established in 2006 at the Albert Nerken School of Engineering by Prof. Robert Dell. LERI, housed in the Department of Mechanical Engineering, is dedicated to addressing energy problems in the developed and the developing world through bold design.

LERI is a research and teaching venue for addressing our current energy problems through design and innovation, particularly by the cascade utilization using of waste energy. LERI has specialized in micro-green energy solutions and new uses for existing energy resources. We have produced many research papers for ASME and other venues, all with Cooper Union student and international faculty authors. Eleven patents have been awarded for our work that are owned by the Cooper Union.
We have developed and installed an innovative shallow system of heated green roofs using waste municipal steam and COGEN hot water in New York City and waste geothermal heat in Iceland. This intensive system has prolonged the growing seasons, enhanced plant growth, and enabled out of region plants from warmer climates while eliminating waste heat. We had an open air cotton harvest in our New York City test beds. Outdoors in Iceland we created a harvest of tomatoes, turnips, and oregano harvest. Until this development, these plants were only successfully grown green houses. The Iceland test beds were also used for our patented thermoelectric generator that enabled the development of telemetry systems, thermoelectric powered robots, and what appears to be the world’s first thermoelectric powered security cameras.

Materials Engineering Students in the Materials Engineering Laboratory analyze how the physical and mechanical properties of components meet desired design characteristics. We are focused on both the biological and materials sciences with activities ranging from applied research on the properties of industrial and biological materials to the development of open-source tools that aid other labs in carrying out the same educational research at lower costs. Our capabilities include tensile, fatigue, and hardness testing; heat treating; failure analysis using optical microscopy techniques, soft tissue testing, and a range of prototyping tools for the design of low-cost open-source hardware.

Mechatronics and Controls Mechatronics combines mechanical engineering and electronic control using a systems perspective for the design of products and processes. With the advent of inexpensive microprocessors, the benefits of a mechatronics design philosophy span application areas such as product design, manufacturing, robotics, instrumentation, and process and device control. The Mechatronics Laboratory includes 430 square feet of designated space for both hands-on learning and research purposes with an emphasis on design and application of mechatronics and control systems theory. The Mechatronics Laboratory is used in the Systems Engineering (ESC161), Feedback Control Systems (ME151), Mechatronics (ME153), and Autonomous Mobile Robots (ME412) courses to supplement technical concepts with practical applications.

To experiment with problems and applications associated with industrial process control, students in ME151 and student researchers utilize process control (PROCON) test rigs, which include: (1) a liquid level-flow process rig, (2) a heat exchanger and radiator/fan temperature control rig, and (3) a pressure control rig consisting of a pipeline on which a pneumatic control valve, orifice block, flow meter and pressure tappings are mounted. All PROCON test rigs utilize ABB industrial controllers that interface with three computer workstations. These experimental workstations mirror the types of systems engineers encounter in industry, such as heating, ventilation, and air-conditioning; petrochemical; and pharmaceutical plants.
The Mechatronics Laboratory includes several computer workstations for conducting feedback control experiments and mechatronics projects. Seven workstations are equipped with a National Instruments Educational Laboratory Virtual Instrumentation Suite (ELVIS) that are used with DC motor and inverted pendulum control trainers from Quanser for systems modeling and feedback control experiments in ESC161 and ME151. The workstations are outfitted with electronics hardware, including power supplies, oscilloscopes, function generators, breadboards, and MPLAB ICD3 circuit programmers, used for signal processing and prototyping. These workstations are also used by students in the Mechatronics and Autonomous Mobile Robots courses, where students build autonomous mobile robots designed to perform tasks or to compete with each other. The laboratory is further equipped with LabVIEW software and National Instruments data acquisition devices and laptops for remote data acquisition.

Forrest Wade Rapid Prototyping The Manufacturing and Industrial Robotics Laboratory was first established with an NSF Instrumentation and Equipment Grant in 1988, and then continuously enhanced with three more NSF grants and a series of equipment grants originated from Cooper Union, the Kresge Foundation, the Howard Hughes Foundation, and the Forrest Wade Foundation.

Since its inception, the Laboratory has evolved into a well equipped instructional environment capable of supporting courses in the areas of product development and general computer-aided engineering disciplines. The Laboratory now houses a PUMA 762 Robot, a Fanuc 200iC Robot, a Roland MDX-540 Milling Machine, a tabletop LightMachine turning center, a Morgan plastic injection molding machine, a Dimension SST-1200es rapid prototyping station, a Microscribe 3-D digitizer, and a network of engineering graphics workstations supporting a suite of engineering design, analysis, and manufacturing software tools: Catia, AutoCAD, MasterCAM, Ansys, and SolidWorks.

Vibration And Acoustics The Vibration and Acoustics Laboratory Vibration is a 640 square feet laboratory for research and educational activities. The laboratory offers opportunities for hands-on, project-based learning and is used in the Mechanical Vibrations (ME101), Advanced Mechanical Vibrations (ME401), and interdisciplinary Acoustics, Vibration and Noise Control (EID160) courses. The laboratory is used in the Mechanical Vibration courses so students gain practical experience with accelerometers and data acquisition to characterize dynamic properties of structures. In the Advanced Vibration class, students perform experimental modal analysis via impact hammer and shaker testing to predict, troubleshoot, and/or optimize structural response characteristics. Examples of past student projects include: comparing wooden and aluminum baseball bats, determining the sweet spot of a hockey stick, analyzing the structural properties of an engine test bed, and studying the vibration of subway cars.
Extensive testing equipment and instrumentation includes various modal impact hammers, ICP force sensors, signal conditioners, five electrodynamic shakers, and PCB Piezotronics and Brüel & Kjaer seismic, tri-axial, and uni-directional accelerometers. The laboratory is equipped with LabVIEW software including the Sound and Vibration Suite, National Instruments data acquisition devices, seven PC computer workstations, one MAC workstation, and two laptops for remote data acquisition. In 2010, a grant from the Brooks Family expanded the testing and data acquisition capabilities to include a state-of-the-art, 16-channel LMS SCADAS data acquisition system.

The Vibration and Acoustics Laboratory includes a 520 cubic foot full-coverage anechoic chamber, sound level meters, and Brüel & Kjaer and PCB measurement grade microphones. Various audio and sound analysis software and equipment, such as ProTools MBox computer audio workstations, 5000W JBL Professional sound system, and Mackie studio monitor and console, facilitate research projects in acoustics, audio, and music. The laboratory offers opportunities for interdisciplinary projects with engineering, art, and architecture. Current and past projects include environmental noise studies, troubleshooting HVAC noise problems, architectural acoustics, and musical instrument design. The laboratory also serves as a design studio for the Interactive Light Studio, an outreach project where students are working to create a digital projection system and animatronics that respond to sound for installation at a New York City public school for deaf and hearing children.
THE IRWIN S. CHANIN
SCHOOL OF ARCHITECTURE

About

The mission of The Irwin S. Chanin School of Architecture is to provide for its students the finest professional education available within an intellectual environment that fosters and expands their creative capacities and sensibilities and establishes the foundation for a creative professional life. The school is committed to the belief that one of society’s prime responsibilities is toward learning and education in the deepest sense: that the exercise of individual creativity within a willing community is a profoundly social act. Fundamental to the mission of the school is the maintenance of an atmosphere in which freedom of thought and exploration can flourish, where students can explore and utilize their strengths and individual talents, interests and modes of working, to their highest potential.

BACHELOR OF ARCHITECTURE

The Bachelor of Architecture curriculum of the School of Architecture is designed to provide the student with a comprehensive educational experience, gaining knowledge and skills in preparation for the successful and ethical practice of architecture. Design studios and courses build cumulatively over the five years in order to establish a broad and deep foundation of knowledge in architecture and urban design in relation to developments in the sciences, arts, and technology. The curriculum stresses the importance of architecture as a humanistic discipline concerned with the design and construction of habitats in diverse social and ecological conditions, and their corresponding requirements for sustainability and ethical responsibility.

The traditional and essential skills of drawing, model-making and design development are complemented by a full investigation of the analytical and critical uses of digital technologies. The study of world architecture and urbanism is deepened by the understanding of individual cultures, environmental, and technological issues at every scale. The theory of the discipline, past and present, is investigated through the close analysis of critical texts and related to the theory and practice of other arts, such as public art, film and video. The position of the School of Architecture, together with the Schools of Art and Engineering and the Faculty of Humanities and Social Sciences, offers a unique opportunity for interaction and interdisciplinary research and experience.
In recent years the school has developed the studio curriculum in ways that have reinforced its strong traditions of design and craft while investigating problems that reflect the changing conditions of contemporary practice, the urgent issues resulting from rapid urbanization and the need for environmental and cultural conservation. In these studio experiments students and faculty together explore the potential contributions of architecture to our changing world, redoubling their efforts to imagine a positive future for an architecture that is, after all, a discipline of design. This task does not involve a wholesale rejection of the past—our traditions and historical experience—for what has changed are not the principles, but rather the determinants and the materials of design. We are in the process of re-learning the poetics of a space of life: of air and water, of geology and geography, of culture and society, of poetics that lie deeply within these elemental forces. On this re-framing—programmatically, technologically, and above all formally—rests not simply the future of architecture, but of our life in the world. Gradually, out of this process, architecture, once more, may become a force through which life is transcribed into art in order to enhance life.

The five year professional program is framed within the context of a rigorous liberal arts education that includes a wide range of required and elective courses in the Humanities and Social Sciences, together with elective opportunities in the Schools of Art and Engineering, emphasizing the nature of architecture as a cultural, social, and technological practice intimately tied to the increasingly urgent questions raised by the man-made and natural environment.

First Year
The First Year is conceived as a broad introduction to society, culture, environment, and the nature, place and role of architecture in this context. The student is introduced to the principles and experience of drawing and representation in a broad range of media and formats: freehand drawing is taught side by side with projective geometry (hand constructed and computer generated), and other means of architectural representation. The Architectonics Studios encourage the investigation of space, structure, and form, as inflected by the occupation and movement of the human body, and situated in the context of environments from natural to urban. The first two semesters of the History of Architecture sequence take the student through the global developments in architecture from Antiquity to the end of the Medieval Period, with special attention to non-western and traditional architectures. The First year of the Humanities and Social Sciences Core emphasize the student’s reading, writing, and analytical skills through the study of literary, historical, and sociological texts.
Second Year
The Second Year advances the student’s knowledge of architecture historically, culturally, and professionally. The Second Year Design Studios are dedicated to the examination, through analysis and design exercises, of the “elements” of architecture and their assemblage, including sites and its ecological conditions, program, spatial accommodation and organization structure and environment. The first segment of the structures sequence introduced students to the principles of architectural structure. The second two semesters of the History of Architecture sequence examine the history of global architecture from the Renaissance to the present, with special emphasis on the complex environmental relations between increasingly industrialized and developing societies. The second year of the Humanities and Social Sciences core advances the students’ knowledge of writing and analytic skills with in-depth courses in literature, history, and philosophy.

Third Year
The Third Year is envisaged as a comprehensive experience of the discipline in design and professional knowledge, supplemented by a range of required and elective courses in environmental, technological, and humanistic subjects, forming an integrated introduction to the environmental, social, and programmatic understanding of design. The Third Year Design Studios build from analysis to synthesis, from analyses of total building assemblages and smaller-scale design exercises, to the development of a comprehensive design for a complex programmatic institution. To this end, the faculty responsible for the teaching of environmental technology, building technology, and structures join the design faculty as teachers in the design studio, with students bringing appropriate aspects of their design proposals for elaboration within the specialized courses.

Fourth Year
The Fourth Year broadens the study of architecture, placing it within its diverse urban and rural contexts, with students gaining advanced knowledge of technological, structural, and professional concerns, the planning, zoning, social and cultural implications of architectural interventions. The Fourth Year Design Studios study the relation of institutional architecture to urban networks and infrastructures, public space, and typologies, from the investigation of rebuilding strategies following disasters, the role and nature of tall buildings, the nature of public and private institutions. The study of landscape is emphasized, both as large-scale natural environments and smaller scale site developments. A broad spectrum of specialized elective courses, including Modern Architectural Concepts, Analysis of Architectural Texts, Landscape, Advanced Topics in Environmental Studies, History, Theory and Criticism, Advanced Concepts in the related arts and professional ethics, deepens the understanding of the profession, and its relationship to different cultures and environmental context.
Fifth Year

The Fifth Year is constructed around the student’s development of their individual thesis project, and the in-depth study of professional practice in all its aspects. The year-long Thesis is divided into two stages over two semesters, with intensive research followed by a comprehensive design. The subjects of the thesis vary in scale and context, with the proviso that the student investigates a problem of fundamental importance to contemporary life and architecture, identified as a site for the intervention of design as an ameliorative construct. Overall the design thesis emphasizes the profound relationship of architecture to the broader problems of the environment and ecological sustainability, whether at the scale of desertification and rising sea-waters brought on by global warming, the provision of unpolluted water to developing communities, to the smaller scales of urban signification, mobility, and programmatic re-use. The course in professional practice surveys the questions of licensing, internship and IDP participation, and introduces students through site visits to a range of practices and public hearings.

MASTER OF SCIENCE IN ARCHITECTURE

The Master of Science in Architecture is a post-professional degree program launched in 2009 to extend the vision and intellectual rigor of the undergraduate program and allow a further development of the school’s preeminent position in the education of architects. It is open to applicants with a first professional degree in architecture (Bachelor of Architecture or Master of Architecture I) from a program accredited by the NAAB or equivalent accrediting agency in another country.

Applicants are required to complete a minimum of one year of work experience after obtaining their first professional degree before applying to the program. The design studio serves as a major component of the program. Seminars address issues particular to the interdisciplinary environment of the graduate program, making use of the varied resources offered by The Cooper Union.

While the Master of Science in Architecture program is studio based, concentrations in one or a combination of three areas are offered: theory, history and criticism of architecture, urban studies and technologies. Prospective students will declare their area(s) of concentration during the application process.
In addition to the existing curriculum of Advanced Design Studio work that culminates in a , advanced level seminars and workshops offer an intensive one-year immersion in the criticism, history and theory of architecture. Emphasis is placed on approaches to architectural analysis and history, the role and contemporary relevance of theory, and the relations between theory and design. Seminars will offer students preparation for careers in journalism, teaching, and eventual doctoral studies, with a broad understanding of the cultural conditions of architectural production and a concentration on excellence in writing. Analysis studios provide a deep insight into the formal and programmatic diversity of historical and contemporary architecture, the process of design, and potential avenues for new approaches towards theory and practice. A required emphasis in Urbanism or Technologies of Representation allows for deeper investigation into specific areas of historical or contemporary architectural theory.

Faculty directly engaged with the Master of Science in Architecture program in studios and seminars for the current year include Diana Agrest, Hayley Eber, Pablo Lorenzo-Eiroa, Will Shapiro, Anthony Vidler, Michael Young, Tamar Zinguer and Guido Zuliani.

Recent guest lecturers and visiting critics have included Aaron Sprecher (McGill University), Mary McLeod (Columbia University), Timothy M. Rohan (University of Massachusetts), Spyridon Papapetros (Princeton University), Alessandra Ponte (Université de Montréal), Dietrich Naumann (Brown University), Caroline A Jones (MIT), Brandon Clifford (MIT), Mariana Ibanez (MIT), Peter Laurence (Clemson University), Jean-Louis Cohen (Princeton University), Mario Carpo (Yale University), Andrew Saunders (University of Pennsylvania) and Anthony Richard Acciavatti (Columbia University), among others.

Theory, History and Criticism of Architecture
Considers questions concerning the theory and criticism of modernism and contemporary architecture, the philosophy and aesthetics of architecture, the mediatization of architecture and broader cultural and historical issues through the critical readings of texts, the development of critical projects and a written thesis.

Urban Studies
Addresses issues central to the design, planning and development of cities and regions, including study of the morphological, social and cultural effects of globalization; the survival of local urban cultures; redevelopment of central cities, suburbs and exurbs; and issues specific to New York and comparative cities.
Technologies
Focuses on technological issues of architectural design, representation, planning and production, such as the impact of new information technologies, new materials and manufacturing processes; hardware and software development; mapping and modeling techniques; and the technologies of fabrication as they influence new design strategies. This area focuses as well on the economic, ethical and technological dimensions and design potentialities of sustainability and developments in new structural systems, materials and building assemblies.

Eligibility
All applicants to the Master of Science in Architecture program must 1) hold the professional degree of Bachelor of Architecture [B.Arch.], the professional degree of Master of Architecture [M.Arch. I] or an equivalent accredited professional degree in architecture from a foreign institution; and 2) have completed a minimum of one year of work experience after obtaining their first professional architectural degree. The program is structured to be completed in two full-time consecutive semesters with a final thesis semester during the subsequent summer session. See the Academic Calendar for information on the Fall and Spring semesters. The Summer semester runs from June-early September (after Memorial Day until the date of the Master of Science in Architecture final Thesis review and exhibition opening during the second week of September). Final thesis presentations will take place during the second week of September at the end of the student’s year of study. Graduate students must complete all 30 credits of the Master of Science in Architecture degree requirements in full-time contiguous resident study at The Cooper Union.

CURRICULUM

Bachelor of Architecture Professional Degree
The School of Architecture offers a five-year program leading to the Bachelor of Architecture, a first professional degree which is accredited by the National Architectural Accrediting Board (NAAB). The architecture curriculum is designed to prepare students for a breadth of opportunities in the profession, offering a broad cultural and intellectual foundation in the liberal arts as they relate to the design of the environment at all scales. The discipline of architecture interpreted as a cultural practice is seen as a basis for a fully-rounded education at the undergraduate level. Students develop their knowledge and design skills within a framework of studios and courses that stimulate research and debate into the nature and role of architecture as a cultural practice with profound social and environmental implications.
The content of the curriculum, based on a wide cultural view of architecture, reflects broad ethical values. Faculty-student interaction is conducted on an intensive basis in the design studio and other classes. Within this framework faculty members encourage students to develop their individual interests and strengths, with a constant stress on fundamentals and a basic commitment. This is intended to equip the graduate with a lasting ability to produce an architectural design that is a meaningful synthesis of the social, aesthetic and technological. The relationship between architecture and other creative disciplines is stressed through the five years. Students are encouraged to express themselves both verbally and visually.

In a moment where the nature, role and scope of the architect is rapidly assuming new directions and dimensions in both the social and technological domains, the school emphasizes the principles of design and their underlying human values, while preparing students to respond positively to change. The program seeks to engender a strong sense of the responsibilities of service and leadership, team-work and individual creativity essential to the development of principled professionals dedicated to interpreting and constructing the spatial needs of the community. The five-year design sequence is carefully structured to introduce the student to the principles of architeconics, the investigation of program and site, structures and environmental and building technologies, in a comprehensive and integrated curriculum. The studios comprise an introduction to the basic elements of form, space and structure; complex institutional design problems in their urban context; and a year-long thesis that demonstrates the student’s ability to synthesize a comprehensive understanding of architecture in society. The essential skills of drawing, model-making and design development are complemented by a full investigation of the analytical and critical uses of digital technologies. The study of world architecture and urbanism is deepened by the understanding of individual cultures, environmental and technological issues at every scale. The theory of the discipline, past and present, is investigated through the close analysis of critical texts and related to the theory and practice of other arts, such as public art, film and video. The position of the School of Architecture, together with the Schools of Art and Engineering and the Faculty of Humanities and Social Sciences, offers a unique opportunity for interaction and interdisciplinary research and experience.

The Cooper Union’s location in New York City in the heart of downtown Manhattan provides a stimulating professional, social and cultural context for the education of an architect and an urban laboratory for the study of design in society. The numerous cultural institutions of the city provide an inexhaustible resource for research and experience outside the studio and classroom.
The school’s faculty includes nationally and internationally recognized architects; the school’s diverse student body consists of highly talented and motivated individuals and its distinguished alumni are leaders in architecture and related fields.

Master of Science in Architecture Post-Professional Degree

The Master of Science in Architecture, formerly known as Master of Architecture II, is a post-professional degree program launched in 2009 to extend the vision and intellectual rigor of the undergraduate program and allow a further development of the school’s preeminent position in the education of architects. It is open to applicants with a first professional degree in architecture (Bachelor of Architecture or Master of Architecture I) from a program accredited by the NAAB or equivalent accrediting agency in another country.

Applicants are required to complete a minimum of one year of work experience after obtaining their first professional degree before applying to the program. Design research serves as the core of the program. Seminars address issues particular to the interdisciplinary environment of the graduate program, making use of the varied resources offered by The Cooper Union.

While the Master of Science in Architecture program is studio based, concentrations in one or a combination of three areas are offered: theory, history, and criticism of architecture, urban studies, and technologies. The program offers the opportunity for advanced research in an enlarged field of inquiry; as well as the possibility for students to craft their own agenda, crossbreeding between areas of studies upon admission. Prospective students will declare their area(s) of concentration during the application process.

In addition to the curriculum of Advanced Design Studio work that culminates in a Thesis project, advanced level seminars and workshops offer an intensive one-year immersion in the criticism, history, and theory of architecture. Emphasis is placed on approaches to architectural analysis and history, the role and contemporary relevance of theory, and the relations between theory and design. Seminars will offer students preparation for careers in journalism, teaching, and eventual doctoral studies, with a broad understanding of the cultural conditions of architectural production and a concentration on excellence in writing. Analysis studios provide a deep insight into the formal and programmatic diversity of historical and contemporary architecture, the process of design, and potential avenues for new approaches towards theory and practice. A required emphasis in Urbanism or Technologies of Representation allows for deeper investigation into specific areas of historical or contemporary architectural theory.
DEGREE REQUIREMENTS

Bachelor of Architecture

The Irwin S. Chanin School of Architecture offers a five-year program leading to the Bachelor of Architecture degree. The degree requirements are intended to provide students with a rigorous training in and exposure to the creative and technical aspects of architecture. The professional courses in the curriculum are supplemented and enhanced by required courses both within and outside the discipline of architecture. The requirements are:

<table>
<thead>
<tr>
<th>First Year</th>
<th>Sem 1</th>
<th>Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 103</td>
<td>Calculus and Analytic Geometry</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 111</td>
<td>Architectonics</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 115</td>
<td>History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 117</td>
<td>Representation I, II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 106</td>
<td>Concepts of Physics</td>
<td>-</td>
</tr>
<tr>
<td>FA 100RA</td>
<td>Shop Tech</td>
<td>1</td>
</tr>
<tr>
<td>HSS 1</td>
<td>The Freshman Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HSS 2</td>
<td>Texts and Contexts: Old Worlds and New</td>
<td>-</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Sem 1</th>
<th>Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 121</td>
<td>Design II</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 122</td>
<td>Structures I</td>
<td>2</td>
</tr>
<tr>
<td>ARCH 124</td>
<td>Environments</td>
<td>2</td>
</tr>
<tr>
<td>ARCH 125</td>
<td>History of Architecture II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 127</td>
<td>Representation III, IV</td>
<td>3</td>
</tr>
<tr>
<td>HSS3</td>
<td>The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>HSS4</td>
<td>The Modern Context: Figures and Topics</td>
<td>-</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Sem 1</th>
<th>Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 131</td>
<td>Design III</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 132</td>
<td>Structures II</td>
<td>2</td>
</tr>
<tr>
<td>ARCH 133</td>
<td>Introduction to Urban History and Theories</td>
<td>-</td>
</tr>
<tr>
<td>ARCH 134</td>
<td>Environmental Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 135</td>
<td>Building Technology</td>
<td>2</td>
</tr>
<tr>
<td>Electives*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Sem 1</th>
<th>Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 141</td>
<td>Design IV</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 142</td>
<td>Structures III</td>
<td>2</td>
</tr>
<tr>
<td>ARCH 143</td>
<td>Construction Management</td>
<td>1</td>
</tr>
<tr>
<td>Electives*</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Sem 1</th>
<th>Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 151</td>
<td>Thesis</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 152</td>
<td>Structures IV</td>
<td>2</td>
</tr>
<tr>
<td>ARCH 154</td>
<td>Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>ARCH 205/225</td>
<td>Advanced Concepts/Topics</td>
<td>2</td>
</tr>
<tr>
<td>Electives*</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Total Credit Requirements for B.Arch Degree: 160

*The bachelor of architecture curriculum includes 27 credits of REQUIRED coursework in general studies (non-professional coursework outside the discipline of architecture). In addition to general studies, students also complete 26 ELECTIVE credits. The elective component can be fulfilled by elective courses in subject areas such as architecture, humanities and social sciences, visual arts, mathematics, engineering, science and languages. Among the elective credits, at least six elective credits must be completed in humanities and social sciences. Additionally, a minimum of seven elective credits must be completed outside the discipline of architecture for a total of thirteen elective credits in general studies.
Minor Architecture students in good academic standing with advance permission who complete a minimum of 15 upper-division credits in a specific field of liberal arts may qualify for a minor in that field of humanities and social sciences. Minors are offered and will be designated on student transcripts in the following fields: Art History; Economics and Public Policy; History and Society; Literature; and Science, Technology, and Society. Students must apply in advance of completing their coursework to be considered for the minor. Approval of the dean of the school of architecture is required for the minor. Additional information is available from the office of the dean of humanities and social sciences.

Master of Science in Architecture

All applicants to the Master of Science in Architecture program must 1) hold the professional degree of Bachelor of Architecture (B.Arch.), the professional degree of Master of Architecture (M.Arch. I) or an equivalent accredited professional degree in architecture from a foreign institution; and 2) have completed a minimum of one year of work experience after obtaining their first professional architectural degree. The program is structured to be completed in two full-time consecutive semesters with a final thesis semester during the subsequent summer session. See the Academic Calendar for information on the Fall and Spring semesters. The Summer semester runs from June–early September (after Memorial Day until the date of the Master of Science in Architecture final Thesis review and exhibition opening during the second week of September). Final thesis presentations will take place during the second week of September at the end of the student’s year of study. Graduate students must complete all 30 credits of the Master of Science in Architecture degree requirements in full-time contiguous resident study at The Cooper Union.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (Fall)</td>
<td></td>
</tr>
<tr>
<td>ARCH 411 Graduate Research Design Studio I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 401 Preseminar</td>
<td>2</td>
</tr>
<tr>
<td>FA 100R Introduction to Techniques</td>
<td>0</td>
</tr>
<tr>
<td>Seminar in concentration</td>
<td>2</td>
</tr>
<tr>
<td>Seminar out of concentration</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits First Semester</td>
<td>12</td>
</tr>
<tr>
<td>Semester 2 (Spring)</td>
<td></td>
</tr>
<tr>
<td>ARCH 412 Graduate Research Design Studio II</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 402 Thesis Research Tutorial</td>
<td>2</td>
</tr>
<tr>
<td>FA 100R Introduction to Techniques</td>
<td>0</td>
</tr>
<tr>
<td>Seminar in concentration</td>
<td>2</td>
</tr>
<tr>
<td>Seminar out of concentration</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits Second Semester</td>
<td>12</td>
</tr>
<tr>
<td>Semester 3 (Summer)</td>
<td></td>
</tr>
<tr>
<td>ARCH 413 Graduate Thesis (written or studio)</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Requirement for M.Arch II Degree</td>
<td>30</td>
</tr>
</tbody>
</table>
Thesis In April of the spring semester prior to advancing to Arch 413 Thesis, each student will be required to present an elaboration of his or her thesis topic and program for review and acceptance by the faculty. Final thesis presentations will be made during the first week of fall semester following the student’s year of study.

Seminars Out of Concentration It is recommended that students register for courses originating in the graduate program (Arch 482, Arch 483 and Arch 485) to satisfy their out-of-concentration seminar requirements.

Graduate courses in the Albert Nerken School of Engineering as well as select upper level undergraduate elective courses could be made available to Master of Science in Architecture students with prior permission from the student’s academic adviser and the individual course instructor. Undergraduate courses may be used to satisfy requirements for out-of-concentration coursework only.

ACADEMIC STANDARDS AND REGULATIONS

Credits
Only those students who are officially registered in a course (i.e., by approval of the dean of the School of Architecture or a faculty adviser and notification of the Office of Admissions and Records) will have grades and credits entered on their records.

Satisfactory Progress Toward Degree
The bachelor of architecture degree program is a rigorous course of study that seeks to prepare students intellectually and professionally for the investigation and making of architecture. The privilege of studying at The Cooper Union, with the benefit of a 50% tuition scholarship for all admitted undergraduate students, brings with it important responsibilities. For students in the School of Architecture, these responsibilities include meeting the requirements of a demanding professional curriculum.

All students who accept our offer of admission are expected to fully commit themselves to completing the degree requirements in accordance with the curriculum, which has been designed with great attention to sequence, prerequisites and the relationships between course work and the goals of each design studio. All classes that comprise the curriculum are essential to the education of an architect, and must be successfully completed by each student in the year and sequence intended. Students admitted as
freshmen will complete the program in five years; transfer students will complete the program in accordance with their placement in the design sequence. Students who do not successfully complete required courses as outlined in the curriculum will not be permitted to advance to the next year of study until the missing requirement(s) is/are completed. Since make-up classes are not offered at The Cooper Union, missing requirements may need to be fulfilled through coursework taken outside The Cooper Union. The intention to complete requirements outside The Cooper Union requires a meeting with the appropriate academic adviser or faculty member in order to obtain advance approval of the potential substitute course, and to confirm the minimum grade required in order for transfer credit to be awarded. It is the responsibility of the student to locate an eligible course at a college/university that allows part-time/summer study; the approved course will be taken at the student’s expense. Students making up courses in this manner will be permitted to register for Cooper Union classes in September only after the Office of Admissions and Records receives a transcript showing the successful completion of these courses. It is in the best interest of each student to complete their coursework here at Cooper Union in conformance with the approved curriculum.

A student must pass a sufficient number of credits each semester to complete his or her degree requirements within five years of study. When dropping or adding courses, a student must follow all degree requirements for their particular year of study. The normal course load is 15–19 credits per semester. Students are required to be registered for a minimum of 12 credits per semester. Failure to maintain satisfactory progress toward the degree may be grounds for dismissal.

Students are eligible to register for more than 18 credits per semester, but not more than 20, if they have received at least a 3.0 rating for the previous semester.

Transfer Students

When admitted, transfer students are offered admission into a specific year of the five-year Design sequence. Placement in the Design sequence is a condition of the offer of admission and not subject to further review or appeal. By accepting the offer of admission, the transfer student agrees to this placement and acknowledges his/her anticipated graduation date. There is no opportunity for transfer students to accelerate through the required Design sequence.

Placement in the Design studio sequence is the only transfer credit evaluation made at the time of the offer of admission. Independently of Design studio placement, transfer students must fulfill all of their B.Arch. degree requirements either through transfer credit or by completing required and elective coursework here. Transfer credit evaluation for required and/or elective coursework in the B.Arch. curriculum,
other than the Design studio, is the responsibility of the individual transfer student. Transfer students are required to have all other previous courses individually evaluated for transfer credit. It may not be possible for transfer students to complete all academic coursework simultaneously with their Design studio requirements. It will be necessary for the matriculating transfer student to successfully complete the design studio to which he or she is admitted, as well as all subsequent studios, as part of his or her degree requirements. The official academic transcript of a transfer student will be reviewed prior to the student’s first registration. This review will determine what, if any, additional coursework may be eligible for transfer credit.

Transfer Credit
Incoming students who have completed college-level academic work outside The Cooper Union may be eligible to receive transfer credit. Approval of transfer credit will be made by the appropriate dean or faculty based on transcripts from other schools and additional materials, including a course description, a course syllabus with topics and course requirements, a reading list and any quizzes, examinations, papers or projects, etc., that demonstrate the level, content and requirements of the course, as well as the student’s proficiency with the course topics. If necessary, a proficiency/placement exam may be administered in certain subject areas. Transfer students must be prepared to present these and other requested materials for each course for which transfer credit is sought. Transfer credit evaluation must be completed by the end of the first semester of study.

Currently enrolled students who find it necessary to complete degree requirements at another institution for transfer credit to The Cooper Union must have appropriate advance approval. Credit may be granted for work done at another institution by any student upon examination by the dean. This credit is to be recorded after satisfactory completion of one semester’s work at The Cooper Union.

Grades
Grades used, with their numerical equivalents, are: A (4.0), A- (3.7), B+ (3.3), B (3.0), B- (2.7), C+ (2.3), C (2.0), C- (1.7), D+ (1.3), D (1.0), D- (1.7), F (0).

The assigned numerical equivalents are used in computing semester and annual ratings by multiplying the numerical equivalent of the grade for each subject by the credits assigned to the subject. The sum of such multiplications for all the subjects carried by a student is divided by the total credits carried by him/her for that period to determine the average rating.
The official meanings for letter grades are as follows:

A Outstanding performance
B Above average performance
C Requirements satisfactorily completed
D Minimum requirements met; passing but unsatisfactory
F Failure to meet the minimum requirements of a subject
I The designation I indicates that the work of the course has not been completed and that assignment of a grade and credit has been postponed.

An I designation is permitted only in cases of illness (confirmed by a physician’s letter) or documentation of other extraordinary circumstances beyond the student’s control.

The deadline for removal of an I designation will be determined by the instructor and recorded at the time the designation is given, but will not be later than two weeks after the start of the next semester. If the I is not removed within the set time limit, either by completing the work in the subject or by passing a reexamination, the I will automatically become an F unless the dean of the School of Architecture extends the time or the student withdraws from school. The designation of I will be granted only with the approval of the dean.

W The student has received permission from the instructor and the dean of the School of Architecture and has withdrawn from a course while passing the course requirements at the time of withdrawal. This permission must be obtained before the end of the sixth week of the semester. The grade is not included in the calculation of the student’s semester rating (grade point average) but remains on the student’s transcript. (See Change of Program: Withdrawing from a Course) Students are not permitted to withdraw from required classes.

WF The student has received permission from the dean of the School of Architecture and the instructor and has withdrawn from a course while failing the course requirements at the time of withdrawal. This permission must be obtained before the end of the sixth week of the semester. This grade is included in the calculation of the student’s semester rating, its numerical equivalent is 0, and it remains on the student’s transcript. (See Change of Program: Withdrawing from a Course).

When appropriate, certain courses may be designated as Pass/Fail courses.

Pass Requirements completed. This designation is not included in the calculation of the student’s semester rating.

Fail Failure to meet the minimum requirements of a course. This grade is included in the calculation of the student’s semester rating; its numerical equivalent is 0.
Automatic Probation/Final Probation
The Academic Standards Committee meets following the end of the Fall and Spring semesters to review the academic records/status of students on automatic probation and, as necessary, final probation. These students will be informed of the meeting in order to have the opportunity to appear before the Committee.

Studio Grades, Grade Point Average and Probation
A student who receives a semester grade point average below 2.0 will be placed on automatic probation and may be the basis for final probation or dismissal, as determined by the Academic Standards Committee.

A student who receives a grade less than C in Architectonics, Design or Thesis will be placed on automatic probation and may be the basis for final probation or dismissal, as determined by the Academic Standards Committee.

A student who receives a grade of C- in Architectonics, Design or Thesis may be required by the Academic Standards Committee to repeat the studio.

A student who receives a grade of D+, D or D- in Architectonics, Design or Thesis will be placed on automatic probation and will be required to repeat the studio. If, in addition, the student has a semester rating below 2.0 the Academic Standards Committee may place the student on final probation. The Academic Standards Committee may also set further academic and/or grade requirements for the student.

A student who receives an F in Architectonics OR Design II, if Design II is the student’s first design studio at The Cooper Union will be placed on probation and will be required to repeat the studio. The student will be required to receive a grade of C+ or better in the repeated class.

General Probation Rules
A student placed on automatic probation may be subject to academic requirements as determined by the Academic Standards Committee.

A second probation may result in final probation or the dismissal of the student as determined by the Committee. The Academic Standards Committee may place a student on final probation.

A student on probation may not be registered for more than 18 credits a semester.

Final Probation
A student may not be placed on final probation before the end of his/her third semester, regardless of whether the student is in Architectonics or Design II.
A student who receives an F in Design or Thesis will be placed on final probation and will be required to repeat the studio. The student will be required to receive a grade of C+ or better in the repeated class. A student who fails to meet this condition may be dismissed by the Academic Standards Committee.

A student on Final Probation who receives a semester rating below 2.0 and/or a grade less than C in Design or Thesis at any point in the remainder of his or her academic career in the School of Architecture will be automatically and permanently dismissed from The Cooper Union with a forfeit of the right of appeal.

At the Academic Standards Committee meeting immediately following automatic dismissal, the Academic Standards Committee may decide to reconsider cases of automatic dismissal and may rescind the dismissal of a student allowing the student to continue the course of study in the School of Architecture. In the case of automatic dismissal being rescinded, the Academic Standards Committee may establish performance requirements for the remainder of their education at the School of Architecture.

Automatic dismissal on final probation (not rescinded by the Academic Standards Committee) unconditionally and irrevocably terminates a student’s academic career in the School of Architecture. A student dismissed on final probation (or permitted to withdraw on final probation) cannot apply or petition for readmission to the School of Architecture.

Failing and/or Repeating Design Studio Each student is responsible for his or her total accomplishment and for being continuously aware of the standards defined in the preceding paragraphs. Students whose work by mid semester indicates possible failure to meet the minimum standards of a course, including excessive absences, may be so informed and should arrange to meet with their respective faculty to address the matter in detail.

A student may not repeat any Design studio (or Architectonics and Thesis) more than once. Any student who fails Arch 151 (Thesis) twice will be dropped automatically from the program.

A student may not fail Architectonics, Design or Thesis throughout the five years more than two times in total. A third grade of F in any of these courses will result in automatic dismissal.

Additional credits for any repeated Design studio (including Architectonics or Thesis) remain on a student’s transcript, but do not count towards the 160 credits required for the B.Arch. degree.
Change of Grade
A change in an official grade of record cannot be made by the dean of admissions and records without the express consent of the dean of the School of Architecture except as defined here. The dean of admissions and records will automatically convert an I designation to an F if an official change of grade is not submitted within the two-week deadline after the start of the following semester. A grade change is not permitted after the end of the subsequent semester.

Change of Program

Adding a Course A student is permitted to add a course only during the first week of a semester, during the drop/add period, and only with the dean’s approval. Adding a course after the drop/add period is not permitted even if the student has been attending the class.

Dropping a Course A student may drop a course during the first week of the semester, during the drop/add period, with the dean’s approval. A student who wishes to drop a course may be required to add equivalent credits in another course as needed to maintain satisfactory progress towards the degree. A course dropped during the first week of the semester will be deleted from the transcript.

Withdrawing from a Course After the drop/add period a student may withdraw from a course through the sixth week of the semester, with the dean’s approval. It is the student’s responsibility to obtain the necessary permission from the School of Architecture and to notify the instructor in order to withdraw from a course. If the student is passing the course at the time of withdrawal, a grade of W will appear on the transcript. If the student is failing the course at the time of withdrawal, a grade of WF will be recorded.

Failure to attend a class does not constitute withdrawal; a student who fails to attend a class without formally withdrawing will earn a grade of F in the course. A student may not withdraw from a course to avoid receiving a failing grade.

A student is not permitted to drop or withdraw from a course necessary to maintain satisfactory progress towards the degree.
Attendance
Classes and studios are scheduled Monday through Friday between 9 am and 10 pm. Studio facilities usually are available to students on Saturdays and Sundays throughout the academic year. Each student is required to be punctual and to attend each scheduled class. In the case of unavoidable absence, the student should, on his or her return, report to the instructor to explain the absence and inquire about making up the lost work.

All architecture students are provided with studio space and are expected to work in the studio during regular business hours.

Leave of Absence
A leave of absence is generally granted between the second and third years or the fourth and fifth years of study. A meeting with and permission from the dean of the School of Architecture is necessary.

Students in good academic standing and making satisfactory progress toward the degree only may request a leave of absence.

Students who have completed at least one year of study and need to interrupt their studies may be granted a leave of absence for up to one year by permission of the dean.

Mandatory Leave of Absence If it is not possible for the student to make significant progress towards the degree requirements in the semester prior to repeating the studio course (as determined by the Academic Standards Committee and/or the dean), the student will be placed on a mandatory leave of absence for one semester and will resume his or her studies in the following semester by repeating the required studio and enrolling in other classes for a total registration of at least 12 credits. If a student is permitted to continue in lieu of repeating and/or a mandatory leave of absence, the student will do so as per the instructions of the Academic Standards Committee. In both cases, the student’s registration must be approved by the dean.

Readmission Students who have withdrawn from the School of Architecture after having completed at least one year of study at The Cooper Union must reapply to the School of Architecture to be considered for readmission as a transfer applicant. Students who have withdrawn from the School of Architecture before they have completed one year of study at The Cooper Union must reapply through the freshman admission procedure.
Students who have been dismissed by the Academic Standards Committee or to whom the Academic Standards Committee has given permission to withdraw in lieu of dismissal and are eligible for readmission must apply within two years to the chair of the Academic Standards Committee before May 15 for admission in September and before November 15 for admission in January. Applicants must be prepared to demonstrate a change from the circumstances that warranted their dismissal.

Former students who have been dismissed by the Academic Standards Committee or to whom the Academic Standards Committee has given permission to withdraw in lieu of dismissal and who have been out of The Cooper Union for more than two years (four semesters) must apply through the regular admission procedure at the time of anticipated return. If offered admission, previous Cooper Union credits earned may be evaluated for transfer credit.

Residence
A student must spend a minimum of four semesters in full-time resident study at The Cooper Union to be eligible for graduation with a Bachelor of Architecture Degree. A candidate for a degree must be enrolled and in residence during the entire academic year immediately preceding the granting of the degree.

A student must complete all curriculum requirements for the Master of Science in Architecture degree program while in residence during three contiguous and consecutive semesters of study (Fall, Spring, Summer) to be eligible for graduation with the Master of Science in Architecture.

A student must have a cumulative grade point average of 2.0 or better in order to graduate from the School of Architecture.

Graduation
Students are responsible for their total accomplishment and for being continuously aware of the standards for graduation. A student must complete all curriculum requirements for the Bachelor of Architecture degree program.
ACADEMIC INTEGRITY

Built upon Peter Cooper’s vision of education, The Cooper Union for the Advancement of Science and Art from its inception has been dedicated to the highest ethical standards. The School of Architecture, founded on principles of independent and exploratory thought, maintains that individual creativity within a willing community is a profoundly social act. In fostering a context of intellectual rigor, the program gives emphasis to a broad spectrum of cultural and ethical concerns which are of significance in the preparation of students for a professional degree and their role in society as practicing professionals of intelligence, creativity and integrity.

Authorship
Acts of academic dishonesty are extremely serious violations of both the spirit and the substance of this community. The Academic Standards Committee of The Irwin S. Chanin School of Architecture will review acts of academic dishonesty including cheating, plagiarizing or the submission of work that has not been prepared by the person claiming authorship. Such acts are viewed as an extremely serious violation, punishable by probation, suspension or dismissal. The action of the Academic Standards Committee in such cases will become part of the student’s permanent academic record.

The Studios/Studio Culture
Central to maintaining a creative environment for intellectual investigation and intuitive exploration are the shared design and computer studio spaces on the third and seventh floors of the Foundation Building.

In the studios, students work together as a community of individuals. Here, students and faculty from all years engage in a process of rigorous inquiry, discussion and critique, freely sharing knowledge, ideas and methodologies. Students study the principles and works of architecture that have contributed to the betterment of the human condition in the development of their own projects. Students of the upper years serve as mentors for the lower years. Diversity and balance are critical values in generating an academic ambiance where humanistic ideals and ethical views serve as a constant reference for individual growth and development. The social and intellectual environment thus created is considered a vital part of the students’ experience at The Cooper Union. Students are required to be present in studio for all hours that their design studio meets and to develop their work in the studio.
Students should be aware of and observe all policies and conditions for the use of the studios, including hours of access. Studio use policies and responsibilities are distributed at the beginning of each academic year.

Annual Exhibition of Student Work

The End of Year Show is a major event of the School of Architecture, exhibiting the work developed during the previous academic year to the academic and professional communities and the public at large. It is an opportunity to present the pedagogical framework of the school and faculty and to celebrate the rigor and diversity of the student work.

The exhibition occupies the lobbies, halls and classrooms of the third and seventh floors, and the Houghton Gallery. Preparation of these spaces and hanging the work is a tremendous task that must be accomplished in the very short period of time between the end of classes and commencement. Students of all years are required to make requested projects available for the exhibition and are expected to fully participate in the installation.

In addition to making their work available for the Annual Exhibition, individual student work may be requested for other purposes (other exhibitions, accreditations, etc.). Students are required to provide requested projects or other materials, which will be returned to them in a timely manner. While student work is to be available for these purposes, work produced by students as part of their coursework remains their property.

Students are required to sign a release form at the start of their studies granting the school permission to use, copy, publish or distribute, perform or publicly display, create derivative works, and incorporate into compilations or collective works the works of authorship created during their enrollment as a student at Cooper Union in any form, format or media now known or later developed or created in the future, for educational purposes and for promoting, marketing and advertising Cooper Union and its educational services worldwide, without compensation. The student retains the copyright to the work.
Arch 103 Calculus and Analytic Geometry
Emphasis on topics that involve the mathematical approach to geometrical and physical relationships and on basic concepts and applications of calculus of functions of one and two variables. 3 credits.

Arch 111A Architectonics
Introduction to the study of architecture; investigation of the interrelationships of space, structure and visual composition. Exploration of the syntax of architecture. Models and orthographic drawing. 4 credits.

Arch 115A History of Architecture I
A broad introduction to the study of the concepts, designs and built examples of architecture from antiquity to the present. Selected projects from around the world will be analyzed in terms of planning, design, structure, technique, function, social context and meaning. 3 credits.

Arch 117A Representation I: Geometry
Introduction to various geometric logics; methods of graphic description, as well as an introduction to concepts and systems of projection and the two-dimensional representation of three-dimensional form and space. Emphasis on the control, precision, and rigor of the geometric description of form. 3 credits.

Arch 121A Design II
Projects comprise elemental architectural programs wherein the student is required to sustain the formal investigations of first year while integrating the complexities of program, context and site. Spatial, structural, material, environmental and visual design are integrated. Emphasis is placed on communicating concepts through drawings and models. 5 credits.

Arch 122A Structures I
A qualitative examination of the behavior of structures. Characteristics and development of the stresses generated from the simple to the complex. A study of the materials of construction used in structures. 2 credits.
Arch 124A **Environments**
Introduction of critical issues of the “natural” environment and the recognition of contemporary interior space as a complex environment both mechanical and passive. This class will provide students with a conceptual grounding in environmental issues at the urban and building scales in the second-year curriculum, when complexities of program, context and site are introduced in the studio. The class will be directly aligned with the Design II spring semester studio, through common faculty and shared projects. 2 credits.

Arch 125A **History of Architecture II**
An introduction to the study of the concepts, designs and built examples of architecture from approximately the 18th to the mid 20th century. Selected projects from around the world will be analyzed in terms of planning, design, structure, technique, function, social context and meaning. 3 credits.

Arch 127A **Representation III: Analysis**
Introduction to the representational conventions of architectural analysis. Drawing modes to include plans, sections, elevations and axonometrics. Analytical readings of form, structure, space, program, and site will be explored. Students to achieve the ability to critically interpret architectural precedents through analytical representation. 3 credits.

Arch 131A **Design III**
Study and analysis of historical precedents followed by a sequence of design problems of increasing complexity. Emphasis on the planning of buildings and the interrelationships among form, structure, detail and technologies. 5 credits.

Arch 132A **Structures II**
The study of strength of materials is applied to the quantitative design procedures for wood and steel structures. Students complete individual projects in wood and lowrise steel structures. 2 credits. Prerequisites: Arch 103/104, Ph 165/166, Arch 122A-B Structures I.

Arch 134A **Environmental Technologies**
Environmental and life safety systems as they affect program and building form, including mechanical (heating, cooling, ventilating), water supply and disposal, electrical, lighting, acoustics, vertical transportation, communication, security and fire protection. Principles of sustainability. Passive and active systems. 3 credits.
Arch 135A **Building Technology**
Materials and methods of architectural construction, lectures, examination and discussion of classic as well as current building techniques. Students assemble full-size “mock-ups” of details for class study germane to their design classes. In general, this course does not separate “construction” from “design” but attempts to supplement, by a means of a more detailed study of design assignments. Field trips may be made to buildings under construction. **2 credits.**

Arch 141A **Design IV**
Investigation of urban programs and sites requiring the integration of form, structure and space. Examination of the complexities implicit in the resolution of urban problems. Analytic studies and explorations generate specific programs for development of each project. Emphasis given to large-scale integrations and the impact of urban transformations upon existing fabric. **5 credits.**

Arch 142A **Structures III**
The design of reinforced concrete using stress methods and plastic design is combined with individual projects in low-rise concrete structures. Elements of soil mechanics and soil investigations are included (Fall only) in foundations design.
2 credits. Prerequisite: Arch 132A-B Structures II.

Arch 143A **Construction Management**
Introduction to construction management principles, techniques and methods including scheduling, cost-estimating, planning and controlling construction process.
1 credit.

Arch 151A **Thesis**
A synthesis of four years’ educational experience. The choice of the area of study is the responsibility of the student. The scope of the problem is defined by each student, who also decides on his or her method of exposition. Problems are analyzed and studied with the aid of faculty from each discipline and by visiting critics. **6 credits.**

Arch 152 **Structures IV**
Intensive seminars are completed on prestressed concrete, wind and earthquake design for tall structures and special structures, while the student becomes the structural consultant for individual assignments for the structural solution of real architectural projects covering prestressed, high-rise steel and concrete buildings and shells.
2 credits. Prerequisite: Arch 142A-B Structures III.
Arch 154A **Professional Practice**
The role of the architect in relation to the community, client, builder, worker and engineer. Societal, ethical, legal and personal obligations. Office organization and administration. 1 credit.

Arch 205 **Advanced Concepts**
This course is intended to be an advanced course dealing with the relationship between architectural space and some other discipline in the humanities. The course deals with an interdisciplinary approach toward a new poetic and the phenomenology, psychology and metaphysics of space. 2 credits. Prerequisite: permission of instructor

After fulfilling the Arch 205 Advanced Concepts degree requirement, a student may enroll in other additional Arch 205 Advanced Concepts classes for elective credit.

Arch 225 **Advanced Topics in History, Theory, Criticism**
Advanced study in history, theory, criticism of architecture, urbanism and technology. 2 credits. Prerequisites: Arch 115A-B, Arch 125A-B and Arch 175 or permission of the instructor.

After fulfilling the Arch 225 Advanced Topics degree requirement, a student may enroll in other additional Arch 225 Advanced Topics classes for elective credit.

UNDERGRADUATE ELECTIVES

Arch 176 **Theory of Landscape Architecture**
Lecture/studio course explores the interrelationships of nature, site design and built form. Focus on basic elements of nature addressed ideologically, poetically, culturally and practically through an interdisciplinary study of works by selected artists, writers, landscape architects and architects. Work with landscape fundamentals, continue on to more complex issues of natural processes and aesthetics, such as atmosphere, ephemerality and time, and of site planning, such as site selection, topography, drainage, ecology and climate, especially as related to architecture and art in the land. 2 credits.

Arch 178 **Advanced Drawing Seminar**
The course will focus on the dialogue between figuration and abstraction. Students will be expected to plan and elaborate an ongoing series of drawings. The class will meet on a seminar basis to critique work in progress and to discuss issues relevant to the language of drawing. There may be an open studio available for those students who wish to pursue drawing from the model. However, students will be encouraged to investigate a broad spectrum of imagery and materials. 2 credits. Prerequisite: permission of instructor
Arch 186 **Workshop**
Operating outside the confines of the semester structure, this one-credit workshop will vary in duration and schedule and have the flexibility to engage a variety of focused, project-oriented topics. The workshop is to be structured towards a critical engagement with specific concepts, techniques and media. Open to students in third year and above.

1 credit. Prerequisite: permission of the instructor. Class instruction for a minimum of 15 hours. May be take a maximum of one (1) time each semester; may be repeated for a maximum total of 4 credits.

Arch 194 **Environmental Technologies Elective**
Advanced study in environmental issues to include such topics as cultural and environmental sustainability, resource allocation, new materials and methods, global networks, urban growth, etc., as they relate to architecture on many scales.

2 credits. Prerequisite: Arch 134A-B or permission of the instructor

Arch 199 **Architecture Independent Study**

Objective: The purpose of this Independent Study is to allow students to pursue an independent study or research project outside their regular coursework, in order to delve more deeply into a specific topic of interest. An Independent study may be taken under the supervision of a member of the resident faculty (defined as full-time or proportional-time faculty members) or adjunct faculty members who have taught at the School of Architecture for at least 6 semesters. The faculty member—who becomes the advisor for the independent course—must approve the proposed study and agree to provide continuing supervision of the work.

Eligibility: Only students in fourth and fifth years in good academic standing (defined as having earned a minimum 3.25 G.P.A. overall for the previous semester) are eligible for independent study. Independent study may be taken only once during a semester in an advanced subject for two (2) credits. One (1) credit of independent study represents a minimum of three (3) hours of work during each week of a 15-week semester.

Application procedure: The major consideration in approving proposals for independent study is the educational value of the study project within the structure of the degree requirements as well as the student having successfully completed any relevant introductory coursework in the topic proposed. Before applying for an independent study, eligible students should contact the faculty they wish to consider as an advisor to discuss their proposal.

1. The selected faculty advisor must be teaching in the School of Architecture during the semester in which you wish to enroll (a professor on leave may not supervise an independent study).

2. The student writes a one-page proposal for the course including a concise description, deliverables, workplan, schedule and preliminary bibliography and describe previous coursework in the proposed topic as well as the educational value of the selected topic of interest.
3. The student selects a faculty adviser who must sign off on the proposal

4. The student submits the signed proposal to the Dean for review in consultation with the faculty member.

5. Approval of the Independent Study based on merits of proposal and availability of funds to compensate faculty member in compliance with CUFCT/CUOP contract.

6. Once approved, student will receive permission to register for ARCH 199.

2 credits.

Arch 401 Proseminar
An introduction to research in architecture and urbanism: theory, research (methods and techniques) and writing, for M.Arch. II degree students only. Selected readings in historiography, theory, criticism and design and methods. Includes lectures and seminars by faculty and visiting specialists in the fields of history and criticism, architecture and urban design methods, research in representational techniques, digital technology, etc. Presentations by each student in the program will encourage interdisciplinary comparison and shared knowledge. 2 credits.

Arch 411 Graduate Design Research Studio I
The Design Research Studio 1 will establish a general problem incorporating aspects of architectural, urban and technological design research to be undertaken by the class, with each student contributing to his or her specific area of expertise. The studio will include seminars by invited guests on topics relevant to the program’s principal areas of study. 6 credits.

Arch 413 Graduate Thesis
The choice of the area of study is the responsibility of the student. The scope of the project and method of exposition is defined by each student in consultation with their thesis adviser and must be approved prior to the beginning of the summer term on the basis of a thesis prospectus presented to the group of faculty. Students will develop a mutually agreed upon schedule for meetings with their adviser and for regular project reviews. 6 credits.

Arch 482 Graduate Seminar in Technologies
Selected topics in the advanced study of technological issues in architectural design, representation, materials, planning, production and construction. Open to undergraduate fourth- and fifth-year architecture students as an elective with permission of the instructor and the dean. 2 credits.
Arch 483 Graduate Seminar in Urban Studies
Selected topics in the advanced study of urban form including readings and case studies in urban analysis, global development, historic preservation and typological transformation. Open to undergraduate fourth- and fifth-year architecture students as an elective with permission of the instructor and the dean. 2 credits.

Arch 485 Graduate Seminar in Theory, History and Criticism of Architecture
Selected topics in the advanced study of the theory and criticism of modernism and contemporary architecture, the philosophy and aesthetics of architecture, the mediatization of architecture and broader cultural and historical issues, through the critical readings of texts as well as case studies. Open to undergraduate fourth- and fifth-year architecture students as an elective with permission of the instructor and the dean. 2 credits.

Arch 499 Architecture Independent Study
Objective: The purpose of this Independent Study is to allow students to pursue an independent study or research project outside their regular coursework, in order to delve more deeply into a specific topic of interest. An Independent study may be taken under the supervision of a member of the resident faculty [defined as full-time or proportional-time faculty members] or adjunct faculty members who have taught at the School of Architecture for at least 6 semesters. The faculty member—who becomes the advisor for the independent course—must approve the proposed study and agree to provide continuing supervision of the work.

Eligibility: Only graduate students in good academic standing [defined as having earned a minimum 3.25 G.P.A. overall for the previous semester are eligible for independent study (which means that graduate students become eligible for Independent Study starting in their second semester of study). Independent study may be taken only once during a semester in an advanced subject for two (2) credits. One (1) credit of independent study represents a minimum of three (3) hours of work during each week of a 15-week semester.

Application procedure: The major consideration in approving proposals for independent study is the educational value of the study project within the structure of the degree requirements as well as the student having successfully completed any relevant introductory coursework in the topic proposed. Before applying for an independent study, eligible students should contact the faculty they wish to consider as an advisor to discuss their proposal.

1. The selected faculty advisor must be teaching in the School of Architecture during the semester in which you wish to enroll (a professor on leave may not supervise an independent study).
2. The student writes a one-page proposal for the course including a concise description, deliverables, workplan, schedule and preliminary bibliography and describe previous coursework in the proposed topic as well as the educational value of the selected topic of interest.

3. The student selects a faculty adviser who must sign off on the proposal.

4. The student submits the signed proposal to the Dean for review in consultation with the faculty member.

5. Approval of the Independent Study based on merits of proposal and availability of funds to compensate faculty member in compliance with CUFCT/CUOP contract.

6. Once approved, student will receive permission to register for ARCH 499.

2 credits.
ADMINISTRATION, FACULTY
AND STAFF

Deans
Hayley Eber, RA, AIA
Acting Dean
B.A.S, University of Cape Town; B.Arch, The Cooper Union; M.Arch, Princeton University

Full-Time Faculty
Diana Agrest, RA, FAIA
The Irwin S. Chanin Distinguished Professor
Diploma, University of Buenos Aires School of Architecture and Urbanism; Centre de Recherche d’Urbanisme, and at the Ecole Pratique des Hautes Etudes, VI Section, Paris, France

Nora Akawi
Assistant Professor
B.Arch, Bezalel Academy of Arts and Design, Jerusalem; M.Sc.CCCP, Columbia University

Lorena del Rio
Assistant Professor
Diploma, Polytechnic University of Madrid, ETSAM

Lydia Kallipoliti
Assistant Professor
Diploma, Aristotle University of Thessaloniki (Greece); SMArchS, M.I.T; M.A., Ph.D., Princeton University

Nader Tehrani
Professor
B.F.A., B.Arch, Rhode Island School of Design; The Architectural Association; M.A.U.D., Harvard University

Anthony Vidler
Professor
Diploma, University of Cambridge; Ph.D., Technical University of Delft (The Netherlands)

Michael Young, R.A.
Assistant Professor
B.Arch, California Polytechnic University; M.Arch., Princeton University

Proportional-Time Faculty
Benjamin Aranda
Assistant Professor
B.A., University of California, Berkley; M.Arch., Columbia University

Elisa Iturbe
Assistant Professor
B.A., M.E.M., M.Arch., Yale University

James Lowder
Assistant Professor
B.Arch., SCI-Arc; M.Arch., Princeton University

Mersiya Veledar
Assistant Professor
B.Arch., The Cooper Union; M.Arch., Princeton University

Adjunct Faculty
Daisy Ames
Visiting Professor I
B.A., Brown University; M.Arch., Yale University

Samuel Anderson, R.A.
Professor
B.A., Harvard University; B.Arch., The Cooper Union

Tulay Atak
Associate Professor
B.Arch., METU (Ankara, Turkey); M.A., Ph.D., UCLA

Zulaikha Ayub
Assistant Professor
B.S., Catholic University; B.Arch., The Cooper Union; M.Des., Harvard University; M.A., Ph.D. (in progress), Princeton University

Ted Baab, R.A.
Assistant Professor
B.A., Columbia University; M.Arch., Harvard University

Gauri Bahuguna
Instructor
B.A., M.Arch., Columbia University

Daphne Binder, RA
Assistant Professor
B.Arch., The Cooper Union; M.Arch., Yale University

Amina Blacksher
Assistant Professor
B.A., Connecticut College; M.Arch., Yale University

Anna Bokov
Assistant Professor
B.Arch., Syracuse University; M.Arch., Harvard University; Ph.D., Yale University

Pamela Cabrera
Assistant Professor
B.Arch., The Cooper Union; M.Des., Harvard University

Zach Cohen
Assistant Professor
B.Arch., Carnegie Mellon University; M.S.Arch., MIT

Dionisio Cortes
Instructor
B.Arch., The Cooper Union

Gerri Davis
Assistant Professor
B.Arch., The Cooper Union
Susannah Drake, RA, FAIA
Associate Professor
B.A., Dartmouth College; M.Arch., M.L.A., Harvard University

Powell Draper
Associate Professor
B.A., Wake Forest University; B.S.C.E., University of Virginia; M.S.E., Ph.D., Princeton University

Natalie Fizer
Associate Professor
B.Arch., The Cooper Union; M.Arch., Princeton University

David Gersten
Distinguished Professor
B.Arch., The Cooper Union

Sue F. Gussow
Professor Emerita
Diploma, The Cooper Union; B.S., Columbia University; M.F.A., Tulane University

Thorsten Helbig
Associate Professor
Dipl.Eng., UAS Bielefeld (Germany)

Mauricio Higuera
Instructor
B.F.A., The Cooper Union; M.F.A., Rutgers University

Nima Javidi
Associate Professor
M.Arch., University of Tehrani; M.U.D., University of Toronto

Teddy Kofman
Assistant Professor
B.Arch., Tel Aviv University; B.Arch., The Cooper Union; M.A.U.D, Harvard University

Lauren Kogod
Associate Professor
B.F.A., Rhode Island School of Design; M.S.A.B.D., Columbia University; Ph.D. (in progress), Harvard University

Steve Kreis
Associate Professor
B.S., University of Missouri; M.A., Hunter College

Katie Lau
Assistant Professor
B.S., Ohio State University; M.Arch., Yale University

Dominic Leong, RA
Associate Professor
B.Arch., California Polytechnic State University, M.S.A.A.D., Columbia University

Jon Maass, RA
Assistant Professor
B.S., University of Michigan; B.Arch., The Cooper Union

Florian Meier
Instructor
Dipl.Ing., Technical University-Munich (Germany)

Gina Morrow
Instructor
B.A., Vassar College; M.Arch., Princeton University

Joan Ockman
Professor
A.B., Harvard University; B.Arch., The Cooper Union

Elizabeth O’Donnell, RA
Distinguished Professor
B.Arch., The Cooper Union

Nat Oppenheimer, PE, LEED AP
Associate Professor
B.S.C.E., Clarkson University

Julian Palacio, RA, AIA
Assistant Professor
B.Arch., Pontificia Universidad Javeriana School of Architecture and Design (Bogota, Colombia); M.S.A.A.D., Columbia University

Anik Pearson, RA
Professor Adjunct
B.Arch., The Cooper Union

Linda Pollak
Professor
B.S., University of Vermont; M.Arch., Harvard University

Jonah Rowen
Assistant Professor
B.A., Carnegie Mellon University; M.Arch., Yale University; M.Phil., Ph.D., Columbia University

Michael Samuelian, RA, FAIA
Assistant Professor
B.Arch., The Cooper Union; M.A.U.D., Harvard University

Brad Samuels
Assistant Professor
B.A., Vassar College; B.Arch., The Cooper Union

Tommy Schaperkotter
Assistant Professor
B.S., University of Virginia; M.Arch., Harvard University

Sheng Shi, PE
Assistant Professor
B.S.C.E., M.S.S.E., Drexel University

Maren Speyer
Instructor
B.Arch., The Cooper Union

Eric Teitelbaum
Assistant Professor
B.S.E., M.S.E., Ph.D., Princeton University

Ryan Brooke Thomas
Assistant Professor
B.A., Stanford University; M.Arch., UCLA

Ruslan Trusewych
Visiting Instructor
B.A., Grinnell College; M.F.A., M.A., Hunter College

Neena Verma, RA
Instructor
B.A., B.S., University of Pennsylvania; J.D., Rutgers University; M.Arch., Tulane University

Matthew Waxman
Assistant Professor
B.A. University of California-Santa Cruz; M.Arch., Harvard University
PROFESSIONAL ACCREDITATION

In the United States, most registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit professional degree programs in architecture offered by institutions with U.S. regional accreditation, recognizes three types of degrees: the Bachelor of Architecture, the Master of Architecture, and the Doctor of Architecture. A program may be granted an eight-year, three-year, or two-year term of accreditation, depending on the extent of its conformance with established educational standards.

Doctor of Architecture and Master of Architecture degree programs may require a preprofessional undergraduate degree in architecture for admission. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The Irwin S. Chanin School of Architecture of The Cooper Union offers the following NAAB-accredited degree program:

Bachelor of Architecture (160 undergraduate credits)

The next accreditation visit for this program will be in 2024.

The NAAB expects programs to be transparent and accountable in the information provided to students, faculty, and the public. As a result, all NAAB-accredited programs are required to ensure that the following information is posted online and is easily available to the public.

6.1 Statement on NAAB-Accredited Degrees

All institutions offering a NAAB-accredited degree program or any candidacy program must include the exact language found in the NAAB Conditions for Accreditation, 2020 Edition, Appendix 2, in catalogs and promotional media, including the program’s website. See above.
6.2 Access to NAAB Conditions and Procedures
The program must make the following documents available to all students, faculty, and the public, via the program’s website:

a) Conditions for Accreditation, 2020 Edition
b) Conditions for Accreditation in effect at the time of the last visit
c) Procedures for Accreditation, 2020 Edition
d) Procedures for Accreditation in effect at the time of the last visit

6.3 Access to Career Development Information
The program must demonstrate that students and graduates have access to career development and placement services that help them develop, evaluate, and implement career, education, and employment plans. See the Center for Career Development.

6.4 Public Access to Accreditation Reports and Related Documents
To promote transparency in the process of accreditation in architecture education, the program must make the following documents available to all students, faculty, and the public, via the program’s website:

a) All Interim Progress Reports and narratives of Program Annual Reports submitted since the last team visit
 2018 IPR, 2021 IPR
b) All NAAB responses to any Plan to Correct and any NAAB responses to the Program Annual Reports since the last team visit
 2019 response, 2021 response
c) The most recent decision letter from the NAAB
d) The Architecture Program Report submitted for the last visit
e) The final edition of the most recent Visiting Team Report, including attachments and addenda
f) The program’s optional response to the Visiting Team Report - not applicable
g) Plan to Correct—not applicable
h) NCARB ARE pass rates
 NCARB publishes pass rates for each section of the Architect Registration Examination by institution. This information is considered useful to prospective students as part of their planning for higher/postsecondary education in architecture. Therefore, programs are required to make this information available to current and prospective students and the public by linking their web sites to the results.
New Diversity & Inclusion Task Force
Late last year, the Faculty Student Senate passed a resolution recommending we take a closer look at gender diversity issues in engineering admissions. I support the resolution and am eager to better understand this issue. I am also expanding the exploration of diversity issues college wide and establishing a new Diversity & Inclusion Task Force to help us do so. Diversity is a central feature of Cooper Union’s legacy and historic mission. It’s also an area where, I believe, we must lead. The structure and approach for this Task Force is being developed now and will launch shortly. The goal is to engage faculty, students and staff in a process that examines diversity and inclusion in our community in order to develop an actionable plan that drives us toward excellence by promoting inclusive practices across all facets of Cooper Union operations, pedagogy, and student support. Look for more information to come on this initiative in the coming weeks, including how you can get involved.

(Excerpted from President Sparks’ communication Opportunities for Involvement in Cooper’s Future, dated April 6, 2017)
6.5 Admissions and Advising
The program must publicly document all policies and procedures that govern the evaluation of applicants for admission to the accredited program. These procedures must include first-time, first-year students as well as transfers from within and outside the institution. This documentation must include the following:

a) Application forms and instructions
b) Admissions requirements; admissions-decisions procedures, including policies and processes for evaluation of transcripts and portfolios (when required); and decisions regarding remediation and advanced standing
c) Forms and a description of the process for evaluating the content of a non-accredited degrees
d) Requirements and forms for applying for financial aid and scholarships
e) Explanation of how student diversity goals affect admission procedures

6.6 Student Financial Information

6.6.1 The program must demonstrate that students have access to current resources and advice for making decisions about financial aid. See Financial Aid and Financial Aid at Cooper

6.6.2 The program must demonstrate that students have access to an initial estimate for all tuition, fees, books, general supplies, and specialized materials that may be required during the full course of study for completing the NAAB-accredited degree program. See 2022-23 Tuition & Fees
SCHOOL OF ART

MISSION

The mission of the School of Art is to educate artists in the broadest sense, both as creative practitioners engaged with a wide range of disciplines in the visual arts and as enlightened citizens of the world who are prepared to question and transform society. The program is structured around an integrated curriculum that fosters connections between disciplines, as well as between traditional and new media. The studio experience affords the opportunity for the development of individual artistic vision in dialogue with collective debates and experiments within an intimate community of artists. The study of history, theory and criticism in the visual arts and general studies in the humanities and social sciences are considered essential in intellectually grounding studio practice. Central to the school’s philosophy is the advancement of the artist’s role in relation to the prevailing forms and institutions of cultural production. Students are challenged to expand their research and experimentation across The Cooper Union, as well as in the surrounding urban environment and in the wider public sphere.

CURRICULUM

The goal of the BFA program is to educate students in the skills, knowledge, and understanding necessary for professional practice in art- and design-related fields. Our integrated curriculum educates students in specific fine arts disciplines but also in the complex interrelation of all visual vocabularies. Through courses in the humanities, the social sciences, the sciences, and the history and theory of art, the program invites students to expand their studio education across disciplines and subjects.

The first year Foundation Program is designed as a basis for the educational program of the School of Art and is intended to prepare students for studies in all the disciplines offered within the curriculum. Through exposure to a variety of two-, three-, and four-dimensional projects, students are given a general introduction to the specifics of visual and spatial phenomena, and to concepts, principles, and techniques of the visual arts. Required courses in the history and theory of art, and in Cooper Union’s unique humanities and social sciences “core” sequence, introduce critical thinking and writing as a necessary part of artistic practice.
Following the completion of the Foundation Program, sophomore students may choose courses in the disciplines of drawing, audiovisual, graphic design, painting, photography, printmaking, and sculpture. Elective studio and techniques classes are also offered on a rotating basis. Since the prerequisite studio courses students take in sophomore year will in large part determine their options for advanced study, students are encouraged to choose a variety of areas in consultation with their instructors and advisors. A continuing involvement in general academic studies serves as a tool to broaden each student’s developing studio experience across histories of ethics, social agency, and human expression.

In junior year, students experience increased freedom and flexibility to determine the depth and breadth of their advanced studies. Students are encouraged to use general academic studies electives, along with elective courses offered by the Schools of Architecture and Engineering, as a basis for the self-directed inquiry which is an integral part of making art.

Seniors work with the highest degree of autonomy, taking advanced courses based on their sophomore and junior prerequisites, expanding both technical aptitude and critical dexterity, and developing a continuous studio practice. The Senior Presentation is an opportunity for a public showing and telling of this work, and, together with projects across the curriculum, provides a context through which students prepare for work and life after Cooper.

Since each transfer student arrives at the School of Art with unique experiences and background, they work closely with their advisors to determine the appropriate academic trajectory.

ACADEMIC STANDARDS AND REGULATIONS

Credits

A credit is an academic unit of measure used for recording progress in the program of study and in meeting the academic requirements of the degree. In studio and lecture courses, one credit represents a minimum of three hours of work during each week of a 15-week semester dedicated solely to that course. These criteria apply to each course in which the student is enrolled.
Example in studio courses Drawing, 3 credits, equals 9 hours of work per week (i.e., 4 hours in class and 5 hours outside work [studio or home] or 3 hours in class and 6 hours outside work).

Example in techniques courses Casting Techniques, 2 credits, equals 6 hours of work per week (i.e., 4 hours in class and 2 hours outside work).

Example in a lecture course English Literature, 3 credits, equals 9 hours of work per week (i.e., 3 hours in class and 6 hours of outside work).

The number of credits awarded in each course represents the fulfillment of an agreement by the student to satisfy the course requirements as defined by each instructor, on time, and in accordance with the definition of credit.

Additional Credits in an Advanced Studio Course Juniors and seniors in good academic standing may request to add credits to their individual course commitments within the following limitations: no more than two additional credits in one course and no more than a total of three additional credits in any one semester.

Written approval of the instructor and the Office of Academic Advising & Off-Campus Programs must be obtained during the registration or drop/add period. Permission will be granted only under special circumstances.

Additional Credits in a Semester Normal progress towards a degree is approximately 16 credits per semester. Students may register for up to 20 credits only if they earned a minimum 3.0 GPA for the previous semester. Under special conditions and with the permission of the Office of Academic Advising & Off-Campus Programs, students may register for more than 20 credits. Students who wish to register for less than 16 credits must do so in consultation with the Office of Academic Advising & Off-Campus Programs.

Independent Study Independent study in a School of Art subject is an alternative to classroom study and may be taken only with a member of the resident faculty (defined as full-time or proportional-time faculty members or adjunct faculty members who have taught at the School of Art for at least seven semesters). Only juniors and seniors in good academic standing are eligible for independent study. Independent study in a School of Art subject may be taken only once during a semester for one, two, or three credits. One credit of independent study represents a minimum of three hours of work during each week of a 15-week semester.

The major consideration in approving proposals for independent study is the educational value of the study project within the structure of the degree requirements. Permission to undertake independent study off-campus can be given only when it is required by the nature of the specific project and when the experience has been
evaluated to be valid by the instructor and approved by the Office of Academic Advising & Off-Campus Programs.

Good Standing, Probation, Dismissal, and Administrative Course Withdrawal

Good standing is defined as a semester GPA of 2.0 or higher and normal progress toward the degree. A semester GPA below 2.0, and/or failure to make normal progress, places students on probation and makes them subject to dismissal by the Academic Standards Committee. Students with unexcused absences and those excessively late to class are also subject to probation or dismissal.

Post-Semester Review Student grades are reviewed at the end of each semester by the Office of Academic Advising & Off-Campus Programs and the Academic Standards Committee. Students who are at risk of dismissal will be invited to write a letter to provide context around their unsatisfactory academic performance. Students who are subsequently placed on probation or dismissed will be notified in writing. Decisions regarding probation are final. Students may appeal dismissal.

Probation Students on probation who do not improve their academic standing during the probationary semester or who fail to meet minimal academic standards during any subsequent semester are subject to further probation or dismissal from The Cooper Union.

Dismissal Students who are dismissed who wish to return to The Cooper Union may appeal their dismissal and/or apply for readmission. Instructions for appeal and readmission are included in dismissal letters. Questions should be directed to the Office of Academic Advisement & Off-Campus Programs.

Administrative Course Withdrawal If an instructor determines that a student’s behavior is hindering the educational progress of the class, the instructor will first make the student aware of the concerns in writing and, if appropriate, provide an opportunity for the student to change their behavior. If the behavior continues, the instructor will consult with the Office of Academic Advising & Off-Campus Study and the Office of the Dean of the School of Art to determine next steps. If it is determined that the student has been provided with reasonable opportunity to participate without hindrance to the educational progress of the class, and that even with these opportunities, the student has not modified their behavior, then the student may be withdrawn from the course and receive a grade of W. Students may appeal such decisions by writing to the Dean of the School of Art within three business days of the notice of course withdrawal.
Grades
At the end of every semester students receive grades for their semester’s work in each subject.

The letter grades which may be given in School of Art courses are: A (4.0), A- (3.7), B+ (3.3), B (3.0), B- (2.7), C+ (2.3), C (2.0), C- (1.7), D+ (1.3), D (1.0), D- (0.7), F (0).

The numbers in parentheses give the assigned numerical equivalents of the letter grade for each course. These are used in computing semester index and cumulative index ratings by multiplying the numerical equivalent of the grade for each course by the credits assigned to that subject. The sum of such multiplications for all the subjects carried by a student is divided by the total credits carried for that period to determine the index or grade point average.

The official meanings for letter grades are as follows:
A Outstanding performance
B Above average performance
C Requirements completed; average performance
D Passing, but unsatisfactory
F Failure to meet the minimum requirements of a subject
I Incomplete (see below).
W Withdrawn (see below).
WU Withdrawn Unauthorized (see below).

I The designation I indicates that the work of the course has not been completed and that assignment of a grade and credit has been postponed. An I will be given only in cases of illness (confirmed by a physician’s letter) or documentation of other extraordinary circumstances beyond the student’s control. The designation of I will be granted only with the approval of the Office of Academic Advising & Off-Campus Programs. The deadline for removal of an I designation will be determined by the instructor and recorded at the time the designation is given, but will not be later than two weeks after the start of the next semester. If the I is not removed within the set time limit, either by completing the work in the subject or by passing a reexamination, the I will automatically become an F unless the dean of the School of Art extends the time or the student withdraws from school before the deadline date.
Indicates that the student has withdrawn from the course. Students must request course withdrawals through the Office of Academic Advising & Off-Campus Programs by the deadline posted on the academic calendar (approximately the eighth week of the semester). The grade is not included in the calculation of the student’s semester rating. Students are encouraged to speak with their instructors both before and after their decision to withdraw.

A student who stops attending a course without withdrawing through the Office of Academic Advising & Off-Campus Programs may receive a grade of WU; however, the instructor is free to record a grade of F in such a case. A WU grade is not included in the calculation of the student’s semester rating, while an F grade is included. When appropriate, certain courses may be designated as Pass/Fail.

Requirements completed. This designation is not included in the calculation of the student’s semester rating.

Failure to meet the minimum requirements of a course. This grade is included in the calculation of the student’s semester rating; its numerical equivalent is 0.

A change in an official grade of record, other than the I designation, cannot be made by the Office of Admissions and Records without the express written consent of the instructor and the dean of the School of Art. Grade changes will not be accepted after one year has elapsed from the completion of the course.

Graduation

To be eligible for graduation students must complete the minimum number of credits required for the B.F.A. degree and must have been enrolled for a minimum of four semesters at The Cooper Union as a full-time student for the B.F.A.

All candidates for the B.F.A. degree must satisfactorily complete the requirement for a senior presentation.

Students must have a cumulative grade point average of 2.0 or better in order to graduate from The Cooper Union School of Art.

Students eligible to graduate and participate in commencement exercises must be approved by the Faculty of the School of Art.

Students who have not fulfilled the requirements for graduation will normally not be permitted to participate in commencement exercises.

Graduation requirements as outlined here are guidelines that are subject to change. Students are responsible for their total accomplishment and for being continuously aware of the standards defined in the preceding paragraphs.
Leave of Absence and Reinstatement

In the School of Art, a maximum of two semesters of discretionary leave are available only upon completion of the first-year Foundation Program. Students who are considering a discretionary leave should first contact the Office of Academic Advising & Off-Campus Programs. Before taking such a leave, all financial obligations to The Cooper Union must be satisfied. Students who require a medical leave should first contact the Dean of Students. All requests for leaves of absence or reinstatement from leave must be made in writing to the appropriate dean(s). A student on leave is inactive and does not have access to the facilities of The Cooper Union.

Readmission Students who have been dismissed or who have withdrawn from the school and wish to be considered for readmission must reapply through the readmission procedure. Questions should be directed to the Office of Academic Advisement & Off-Campus Programs.

Registration and Change of Program

Only those students who are officially registered in a course will have credits and a grade entered on their records. Students are required to register for each semester through the online registration system, during the announced registration period.

A student who receives a grade of F, W, or WU in the first semester of a two-semester course sequence will not be allowed to register for the second semester of that course. In such a situation the student will consult with the Office of Academic Advising & Off-Campus Programs in order to determine a future program of study. Students whose records by mid-semester indicate a possible failure to meet required standards may be so informed.

Adding a Course A student is permitted to add a course during the drop/add period with approval from the Office of Academic Advising & Off-Campus Programs.

Dropping a Course A student may drop a course during the drop/add period with approval from the Office of Academic Advising & Off-Campus Programs. A student who wishes to drop a course may be advised to add equivalent credits as needed to maintain satisfactory progress towards the degree. A course dropped during the drop/add period will be deleted from the transcript.

Withdrawing from a Course A student who wishes to leave a course after the drop/add period must request course withdrawal through the Office of Academic Advising & Off-Campus Programs. The deadline, approximately the eighth week of the semester, is posted on the academic calendar. A grade of W will appear on the transcript.
A student who stops attending a course without withdrawing may receive a grade of either **WU** or **F** at the instructor’s discretion.

Residence Requirement
A candidate for a degree must have been enrolled during two academic semesters preceding the granting of the degree and in residence during the last semester.

Transfer Credit
Transfer students and freshmen with advanced standing may apply for transfer credits to be counted toward the BFA degree requirements.

A maximum of 60 credits may be transferred toward the BFA degree, at the time of admission only. An accepted applicant who has previously earned a baccalaureate degree in a discipline other than art will be treated as a transfer student for purposes of evaluating completion of degree requirements and length of time allotted at The Cooper Union to complete the BFA.

Faculty in both the School of Art and the Faculty of Humanities & Social Sciences (HSS) evaluate official transcripts and make recommendations for awarding credits, which must then be approved by their academic dean. Faculty in the School of Art evaluate credit in the areas of the Foundation program, studio, science, and contemporary art issues. Faculty in FHSS evaluate credit in other humanities and social science areas.

Generally, the required 10 credits of free electives are completed during the student’s stay at The Cooper Union, and previously earned credits are not transferred into this category. Exceptions to this rule may be granted by the Admissions Committee, with the approval of the dean of the School of Art, at the time of admission only. (See School of Art Transfer Requirements).

Transfer credits will be officially recorded only after one semester of satisfactory work is completed at The Cooper Union.

Withdrawal from School
Written requests for withdrawal should be addressed to the dean of the School of Art and submitted through the Office of Academic Advising & Off-Campus Programs.

The academic standards and regulations outlined here are guidelines that are subject to change.

Students are responsible for their total accomplishment and for being continuously aware of the standards defined in the preceding paragraphs.
DEGREE REQUIREMENTS

FOR STUDENTS ENTERING PRIOR TO FALL 2022

Candidates for the Bachelor of Fine Arts degree are expected to complete 125 credits within eight semesters of study and within the following disciplinary credit distribution.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Foundation Courses</td>
<td></td>
</tr>
<tr>
<td>Basic Drawing (Analytical and Descriptive)</td>
<td>3(^1)</td>
</tr>
<tr>
<td>2-Dimensional Design</td>
<td>3(^1)</td>
</tr>
<tr>
<td>3-Dimensional Design</td>
<td>3(^1)</td>
</tr>
<tr>
<td>4-Dimensional Design</td>
<td>2(^1)</td>
</tr>
<tr>
<td>Color</td>
<td>2(^1)</td>
</tr>
<tr>
<td>Introduction to Techniques I & II</td>
<td>1(^1)</td>
</tr>
<tr>
<td>Foundation Orientation</td>
<td>0.5(^1)</td>
</tr>
<tr>
<td>Foundation Project</td>
<td>0.5(^1)</td>
</tr>
<tr>
<td>Foundation Studio</td>
<td>3(^1)</td>
</tr>
<tr>
<td>Required Art History Course</td>
<td></td>
</tr>
<tr>
<td>Modern to Contemporary: An Introduction to Art History</td>
<td>6(^1)</td>
</tr>
<tr>
<td>Art History Electives</td>
<td>10(^*)</td>
</tr>
<tr>
<td>*Including 2 credits in prehistory through 17th century art and 2 credits in global perspectives on art</td>
<td></td>
</tr>
<tr>
<td>Required General Academic Studies</td>
<td></td>
</tr>
<tr>
<td>Freshman Seminar</td>
<td>3(^1)</td>
</tr>
<tr>
<td>Texts and Contexts: Old Worlds and New</td>
<td>3(^1)</td>
</tr>
<tr>
<td>The Making of Modern Society</td>
<td>3(^2)</td>
</tr>
<tr>
<td>The Modern Context: Figures and Topics</td>
<td>3(^2)</td>
</tr>
<tr>
<td>Science</td>
<td>3(^*)</td>
</tr>
<tr>
<td>General Academic Studies Electives</td>
<td></td>
</tr>
<tr>
<td>To be elected from Art History(^3), Foreign Language(^4), History of Architecture, Humanities, Social Sciences, and Sciences</td>
<td>12</td>
</tr>
<tr>
<td>Prerequisite and Advanced Studio Courses</td>
<td></td>
</tr>
<tr>
<td>To be elected from any studio discipline</td>
<td>54</td>
</tr>
<tr>
<td>Required Senior Presentation</td>
<td>0</td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td>To be elected from courses in any discipline at Cooper Union or at other institutions approved by the dean of the School of Art</td>
<td>10</td>
</tr>
<tr>
<td>Total Credit Requirements for the B.F.A. Degree</td>
<td>125</td>
</tr>
</tbody>
</table>
Studio Courses
The student’s choice of studio courses is based on individual interest in various disciplines, on prerequisite courses for advanced areas of study and on the student’s interest in working with particular instructors.

There are limitations on the number of credits a student may take each semester in any one area of study, depending upon the student’s progress in the program (number of credits completed toward the degree). The number of credits allowed is determined as listed below:

<table>
<thead>
<tr>
<th>Credits Completed</th>
<th>Maximum Credits per Semester per Area of Study*</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 (Sophomore)</td>
<td>6</td>
</tr>
<tr>
<td>64 (Junior)</td>
<td>9</td>
</tr>
<tr>
<td>96 (Senior)</td>
<td>no limit</td>
</tr>
</tbody>
</table>

* Includes related techniques courses

General Academic Studies Requirements and General Academic Studies Electives
The general academic studies requirements of the BFA degree include four core courses in the humanities and social sciences (12 credits), two required courses in art history (four credits), five electives in art history (10 credits), and science (three credits). The additional general academic studies electives must total 12 credits. Students will average a minimum of two courses per semester from the list above.

During Foundation year, BFA candidates take two core courses in the humanities and social sciences and two required courses in art history.

During sophomore year, BFA candidates take two further core courses in the humanities and social sciences and either two art history electives or one art history elective and a science course.

Throughout the last two years, students complete their remaining general academic studies requirements and general academic studies electives.

Foreign language coursework at the intermediate or advanced level, taught by language instructors with appropriate academic credentials, may be presented to the Faculty of Humanities & Social Sciences for possible general academic studies elective credit. A maximum of four credits of language study may be approved in this category. Intermediate or advanced foreign language studies beyond four credits may be presented to the dean of the School of Art for possible free elective credit.
Free Electives
Any Cooper Union course not being counted toward another requirement may be counted toward the free elective requirement. Students frequently take TE (techniques) courses toward the free elective requirement. It should be noted that students may take only one TE course per semester, unless granted an exception through the Office of Academic Advising & Off-Campus Programs.

Senior Presentation Requirement
A public presentation of each senior student’s work, normally in the student’s final semester, is a requirement for graduation. Each student may satisfy this requirement with an exhibition or, where appropriate, a screening, performance, or publication. No student will be permitted to receive a degree unless this requirement is completed to the satisfaction of the faculty and the dean of the School of Art at a mutually agreed upon time and venue. Completion of the requirement will be reflected on the student’s transcript. The 41 Cooper Gallery will be reserved for senior student exhibitions during much of the spring semester; other appropriate exhibition spaces will also be made available.

Progress Toward the Degree
Students are expected to maintain normal progress toward their degrees.

Normal progress in the Foundation year is defined as completing all courses in the Foundation curriculum.

Normal progress in any semester after the Foundation year, and for transfer students, is defined as completing an appropriate balance of fine arts, general academic studies requirements, general academic studies electives, and free elective courses such that the student can finish all degree requirements in the number of semesters allotted.

Students should use online resources and consult with the Office of Academic Advising & Off-Campus Programs in order to assess their progress towards the degree.

Exchange Programs
The School of Art offers a number of exchange programs with schools abroad. They currently include opportunities for a junior-year semester of study in the Czech Republic, England, France, Germany, Israel, Japan, the Netherlands, Spain, Sweden, or Switzerland. Students should consult the Office of Academic Advising & Off-Campus Programs as early as possible for information about these exchange opportunities.
Eligibility Requirements for the Exchange Program

Students who have completed at least 64 credits toward the BFA degree, have a cumulative GPA of 3.0, and have no outstanding first- and second-year requirements, may apply for one semester of exchange. The student must maintain good academic standing in the semester prior to departure, otherwise permission to participate may be revoked.

Transfer students must have completed at least 32 credits in residence at The Cooper Union before applying for exchange and must have an additional 32 credits to complete in residence upon their return. Transfer students must also have met all first- and second-year requirements and have a cumulative GPA of 3.0.

Students applying for exchange must be in residence during the semester when they are completing the application process.

Students may earn a maximum of 12 credits in studio courses for one semester of study on exchange. A maximum of 6 credits may be awarded by any one faculty member for work done while on exchange. Typically, students do not take courses toward their requirements in the humanities, social sciences, or sciences while on exchange. Students must therefore complete additional coursework in these areas in the semesters before and after exchange.

Since foreign schools may have academic calendars at variance with that of The Cooper Union, students studying on exchange who cannot return in time for the start of the next semester at the School of Art must request a discretionary leave of absence for that semester.

Students may participate in exchange only once during their stay at The Cooper Union.

Students from other institutions who are enrolled at the School of Art as exchange students may not apply to transfer to The Cooper Union School of Art while in residence at The Cooper Union.
Foundation courses are required of all first year students.

FA 100.1 Introduction to Techniques
An introduction to the physical aspects of working with wood, metal, plaster, and plastics, as well as an introduction to on-campus computer facilities and resources. A basic introduction to the Adobe interface, specifically Photoshop and Illustrator will be provided. \(\frac{1}{2} \) credit per semester. Required for first year students. One-year course. Pass/Fail.

FA 102.1 Two-Dimensional Design
Exploration of the visual and intellectual aspects of form on the two-dimensional surface, in a variety of media. Investigations into the relationships of perception, process and presentation. Required for first year students. 3 credits.

FA 105 Four-Dimensional Design
This course investigates the properties of time and movement and the fundamentals of four-dimensional design. Students explore duration, condensation, expansion, interruption, simultaneity, stillness, action and situation through a wide range of materials. Required for first-year students. 2 credits.

FA 109.1 Three-Dimensional Design
Students work on projects that explore the fundamentals of forms and space and investigate the properties of materials, structure, mass, scale, light and motion. Required for first year students. 3 credits.

SE-101 Foundation Orientation
Foundation Orientation brings together all first-year students as an introduction to the academic life of the School of Art, as part of The Cooper Union for Advancement of Science and Art. The course is designed to give students a working overview of opportunities and resources available to them. Required for first year students. 1 credit. Pass/Fail.

Audiovisual

FA 275 Sections 1-4, Audiovisual I
An introduction to concepts, production techniques, and histories of artists’ moving image work. Over two semesters, students will investigate the origins and evolution of animation, film, video, and sound recording for cinema, with classroom instruction and experimentation in the techniques and production of each. Alongside a historical and theoretical framework, a wide range of practical tools will be introduced, including pre-cinematic image capture, 16mm film and digital cinema production, stop action animation, sound recording, and lighting. 3 credits. One-semester course. May not be repeated.
FA 376 **Animation Workshop**
An advanced course in frame by frame film making. An examination of existing work in the field will accompany the development of independent projects, ranging from traditional cartoon animation to fine art-based experimentation. Films begun in Animation I can be carried to completion in this course. Techniques can vary from simple index card animation to elaborate combinations of cel and rotoscope. The relationship of sound to image will be explored and sound tracks produced. Individual projects will be completed on 16mm film with the option to transfer final work to video.
3 credits. Prerequisite: AV I.

FA 386A **AV Projects: The Film Essay: A Form That Thinks**
The film essay is sometimes called "A Form that Thinks." Many influential and highly imaginative film and video makers have created works that blend fiction and non-fiction to reflect on happenings in the world and offer alternative visions of the past and future. These works often take the form of stylistic collages, incorporating a variety of source material, such as film clips, photographs, newsreel footage, animations, and drawings that are woven together, reflected upon, and interpreted through narration. They are considered critical because they question the relationship between images and our perception of reality.

In this course we will watch and discuss films by Alain Resnais, Chris Marker, Jean Luc Godard, Trinh T MinhHa, John Akomfrah, Harun Faroki, Kidlat Tahimik, Chantal Akerman, Jorge Furtado, and New Red Order.
Students will also develop their own videos and films throughout the semester and will engage in group critiques of their works in progress. 3 credits. Prerequisite: FA-276 Audiovisual II.

FA 387A **AV Projects: Beyond Sight: Haptics and Opacity in Moving Image Arts**
What does it mean to feel sound? What does it mean to hear an image? How can theories of touch and opacity help us think through the materiality of film, video, and sound? In this course we will explore artworks that work against the preconditions of the moving image. Students will be asked to consider site, spectatorship, and accessibility in their own practices. Critiques, discussions, and screenings will be framed by readings in Black studies, disability studies, and queer theory. This course welcomes students working in a wide range of genres and media.
3 credits. Prerequisite: FA-276 Audiovisual II.

FA 479A **Independent Study in Film**
1-3 credits. Requires approval of instructor and the Dean of the School of Art

FA 489A **Independent Study in Video**
1-3 credits. Requires approval of instructor and the Dean of the School of Art
Drawing

FA 240, Sections I-IV **Drawing I**
The course is designed to explore the phenomena of drawing as basic to the visual language of all disciplines. The fundamental notion of observation and analysis in drawing is investigated. 3 credits. One-semester course. May be repeated once. Prerequisite to all Advanced Drawing.

FA 341A **Advanced Drawing**
Advanced studies in drawing emphasizing the student’s conceptual independence from traditional draftsmanship. This course is for students who have an established direction in drawing. 3 credits. Prerequisite: One semester of Drawing I.

FA 343A **Advanced Drawing**
Offered to students working independently in any medium. Must be self-motivated. There will be group and individual critiques. 3 credits. One semester course.

FA 345A **Advanced Drawing**
This course offers an opportunity to develop a vital vocabulary in drawing through exploration of figuration, abstraction, observation or imagination. There will be an emphasis on the development and evolution of concepts, ideas. 3 credits. One semester course.

FA 449A **Independent Study in Drawing**
1-3 credits. Requires approval of instructor and the Dean of the School of Art

Electives

TE 216 **Calligraphy**
Students learn the fundamentals of Calligraphy. 2 credits.

TE 305 **Techniques in Website Programming: HTML/CSS/JavaScript**
This course explores programming techniques using HTML, CSS, JavaScript and other data formats. Students will complete projects that demonstrate their skill and understanding of building web sites and basic programming. The purpose of this course is for the student to develop the skills necessary to utilize the many and varied web technologies for their artistic and professional practices. One-semester course. Cannot be repeated. Free elective credit.
TE 390 **Casting Techniques**
Casting Techniques is a process intensive course covering the methods of translating a wax positive into bronze or other non-ferrous metals. All associated techniques from beginning a plaster or rubber mold to casting, chasing, finishing and patination of metal sculptures will be covered. Students will explore a variety of approaches to casting, as well as engage in discussions involving the history of bronze casting, and its place in contemporary art. 2 credits. One-semester course. May not be repeated. Free elective credit.

RS 201 **Science Topics**
Topics vary.
3 general studies credits. Required science course. To be taken during the sophomore, junior or senior year.

SE 403A **IntraDisciplinary Seminar**
This course is a hybrid between a lecture series and discussion seminar. It is intended to provide a stimulating and rigorous forum between students’ artistic concerns and those of twelve visiting speakers in a public lecture series of the School of Art. Class discussions will center on diverse presentations by artists, theorists, activists, designers, writers, curators, gallerists and other practitioners involved in the arts from positions that embody an interdisciplinary approach or that imply new uses for disciplinary traditions. Accordingly, the course is designed to introduce students to some of the debates currently driving contemporary art and the larger social context it embodies. Members of the class are expected to be active participants and will therefore be asked to respond with some intellectual invention to a variety of topics with weekly discussions, readings, and written or oral presentations. 2 credits. Free elective credit.

Graphic Design

FA 211 **Graphic Design I**
An introduction to the techniques and visual language of graphic design. Weekly projects explore fundamental concepts in form, composition, and typography. Presentations and readings in graphic design history will complement weekly assignments. Students will explore basic imagemaking processes as well as be instructed in digital production techniques. 3 credits.
FA 215 **Typography**
Empirical explorations of typographic messages through placement, massing, weight, size and color are analyzed to develop an understanding of aesthetic composition of typographic form and meaning. Legibility, unpredictability and sequencing, as well as the use of grid structures, are investigated. The development of critical judgment about typography is emphasized. 3 credits. Prerequisite: Graphic Design II.

FA 315A **Advanced Design: Type Design**
This course will establish a fundamental understanding of how typefaces work, both technically and aesthetically, and provide experience in the techniques used to create them. After a basic introduction to the design space shaped by the different kinds of contrast and construction the students will acquire manual drawing skills and the digital drafting techniques which will lead them to their own, original design. The class will focus on developing a concept into a structurally sound typeface. This practical in-depth project will help develop an analytical grasp of the design space. 3 Credits. Prerequisites: FA-212 Graphic Design II and FA-215 Typography.

FA 317A **Advanced Design: Icons, Marks and Emojis**
From the thumbs up in a text message to the power-off button on an appliance, the swoosh on a sneaker to the cloud on a weather report, we rely on icons, marks, and emojis to help us communicate. In this course, students will be exposed to a wide range of systems that use non-verbal forms to communicate function, define categories, reflect identity, or display emotion and will develop and apply their own through a series of assignments. 3 credits. Prerequisites: FA-212 Graphic Design II and FA-215 Typography.

FA 429A **Independent Study in Graphic Design**
1-3 credits. Requires approval of instructor and the Dean of the School of Art

FA 327 **Computational Studio: Art and Blockchain**
This course will explore practical and theoretical uses for art and cryptocurrency. The development of Bitcoin cryptocurrency and decentralized computing on public blockchains have created the template for what is slated to become the next iteration of the internet—Web3. The rapid growth of this dynamic technological infrastructure over the last decade has reshaped fields such as economics, philosophy, and art. 3 credits.

FA 328 **Motion Graphics**
Students will explore the conceptual and technical challenges of design for the television screen. All aspects of industry video/ broadcast production are introduced and integrated into a design core focused on strong communication. Projects include identity design, combining kinetic typography, animation, sound and video. The course includes workshops in After Effects, Final Cut Pro and Protools. 3 credits. Prerequisites: Graphic Design I and II. Pre- or corequisite: Typography.
Painting

FA 130A Painting
A studio experience with the physical, compositional and conceptual components of pictorial invention and image-making. Readings, assignments and critiques will enhance the development and articulation of an inventive individual approach to the painting discipline in preparation for advanced level work.
3 credits per semester. One-year course. Prerequisite to all Advanced Painting courses.

FA 331A Advanced Painting
This course will work with students in individual and group settings to discuss their work and personal development as an artist, as well as engage students with relevant practical, historical and contemporary discussions around painting. Discussions, critical feedback, suggestions, and prescriptions given to students are sounding boards and/or opportunities for students to further locate their practice and voice as an artist. Students will rely more on their individual studio spaces as sites from creation, research, presentations and meetings with faculty and visitors. In this way, the course might reflect the professional space of the artist studio. Debate around ideas, process and material should be expected as well as respect for each student’s personal journey. Lectures, field trips and the presentation of various media and demonstrations can be expected. 3 credits. Prerequisite: FA-130A and B Painting.

FA 336A Advanced Painting
For students who are highly motivated and dedicated to their work, this course focuses on individual development through one-on-one critique. Ideas will be presented for group discussion through readings and viewings of current museum and gallery shows. Group critiques will encourage students to develop and voice strong opinions. 3 credits. One-semester course. 3 credits. Prerequisites: FA-130A and B Painting.

FA 339A Advanced Painting: Katz Guest Artist Series
This course will support students’ individually determined painting projects with emphasis on building sustainable studio practices and generating research strategies. We will focus on personal artistic tool-building, through visual theory and material processes, considering each artist’s studio as an adaptive instrument for experimentation. Individual and Group critiques will dictate the assignment of readings, projects, and exhibition visits. 3 credits. Prerequisites: FA-130A and B Painting.
Photography

FA 206, Sections I-II Lens/Screen/Print I
Lens/Screen/Print I is the first section of a two-semester trajectory. This is an immersive foundation course in the practice of photography focusing on a critical engagement with lens technology, color theory/management and combined analog/digital workflows. Topics include: exploratory and technical knowledge of 35mm and medium-format analog cameras, DSLR cameras, lenses and lighting conditions, fluid movement through digital black-and-white and color processes, such as digital imaging editing software, scanning analog color, and digital printing in black-and-white and color. Exposure to critical theory and major philosophical arguments central to lens, screen and print based practices will be explored. This is an assignment driven class. 3 credits.

FA 364A Photography
This course aims to advance students’ own work in photography, film, installation, and sculpture, through group and individual critiques, classroom presentations and discussions with the instructor. Our frameworks for discussion will focus on research and archival methodology and include the ideas of micro- histories; memory, narrative and community building; and ways to create dialogue between various narrative modes, performative strategies and image regimes. We will also look into examples of experimental art practices and decolonial histories (Jumana Manna, Uriel Orlow, Bouchra Khalili, Kader Attia...). 3 credits. Prerequisites: FA-207 Lens/ Print/ Screen II.

FA 366 Advanced Photography: Alternate Processes
This course breaks down barriers between digital and analog photography, transforming meaning and content through various forms of manipulation. Its fast-paced, hands-on demos include hand-applied photographic emulsions (such as cyanotype, Van Dyke, palladium, and liquid light) and digital printing/transferring options (beyond emulating the traditional print, on surfaces such as paper, wood, metal, fabric, etc.). The production of large-format analog and digital negatives will also be explored. 3 credits.
Prerequisites: FA-207 Lens/ Print/ Screen II.

FA 469A Independent Study in Photography
1-3 credits. Requires approval of instructor and the Dean of the School of Art
Printmaking

FA 250, Section I-II **Silkscreen I**
This course explores screen printing as a means of communication with emphasis on the execution of these images. Students visit museums to learn to appreciate posters from various historical periods. The actual screen printing will be taught with the use of images, type and color. The goal of the course is to combine the components of art, printing and communication. 3 credits. One-semester course. May not be repeated.

FA 251 **Lithography I**
An introduction to traditional and contemporary image-making on lithographic stones and commercial aluminum plates, with emphasis on the technical aspect of the medium. The various areas to be examined include stone graining, crayon and tusche drawing, processing, proofing and edition printing procedures, etc.
3 credits. One-semester course. May not be repeated.

FA 252 **Etching I**
An introduction to etching images on metal plates, through the use of hardground, aquatint softground. The emphasis is on the technical understanding of the medium. Other image-making processes to be covered are drypoint and engraving.
3 credits. One-semester course. May not be repeated.

FA 253 **Paper: Materiality and Sustainability**
This studio course explores making paper from traditional to contemporary approaches. The course incorporates specified instruction and experimentation driven by student independent projects. The exploration of the structural and historical uses of Western and Eastern methods including contemporary issues of recycled and alternative fibers will frame an understanding of the potential uses and appearances of handmade paper. From a basis in sheet forming, pigmenting, sizing, and the use of additives, the class will move into an emphasis on paper as a visual and sculptural object, covering paper casting and other three-dimensional approaches. 3 credits.

FA 354A **Experimental Printmaking**
In this course we will explore techniques and concepts that compliment and augment traditional modes of printmaking Students will develop self-directed projects as they work to understand printmaking within an expanded field of visual inquiry. We will explore the potential of the multiple to create unique pieces and further develop our aesthetic understanding of print. Traditional, yet somewhat alternative, processes such as trace monotype, pochoir, and white line woodcut will be explored as well as multiple color printing. Work in series and book formats may also be discussed as possibilities in developing student projects. Contemporary methods such as laser engraving and digital printing will also offer possibilities for developing projects. 3 credits. Prerequisites: 2 Printmaking classes
FA 459A Independent Study in Printmaking
1-3 credits. Requires approval of instructor and the Dean of the School of Art

Science

RS 201g Science: Astronomy
The course starts with how to measure things, such as units of time, length and mass. We introduce the celestial sphere, which will help us to understand such things as days as measured by the Sun and by a star. This will also help to understand seasons. We then introduce a short history of western astronomy. We look at the universe, starting at home (Earth and Moon) and move out—solar system (Sun and planets), stars, galaxies, and cosmos. Along the way, we look at how we look (light and telescopes), and how we measure things [distance, brightness and color]. 3 credits.

RS 201h Science: The Foundations of Physics
The course is the survey of major concepts, methods, and application of physics. It will chart the history of the discipline, tracing the development of ideas about motion, time, space, and the structure of matter from the early Greek philosophy to the present day. The main topics will include Newton’s mechanics, conservation principles, electromagnetism, thermodynamics, and modern physics. Special attention will be given to the radical changes in our understanding of reality brought about by the advances in the main branches of modern physics: special and general relativity, particle physics and quantum mechanics. The course will introduce essential concepts from these fields, such as spacetime, spacetime curvature, uncertainty principle, complementarity, entanglement, dark matter and energy, etc., and discuss their scientific and philosophical implications. 3 credits.

Sculpture

FA 391A, Sections I-II Sculpture
This course takes a concrete approach to the development of critical discourse about works of art. It exercises the student’s ability to analyze the activity of making sculpture in particular and advances the student’s understanding of how to proceed in the studio. Problems of structure, materials, meaning, intention, and context are the subject of class discussion. 3 credits. One-semester course.

FA 392A Sculpture
This course takes a concrete approach to the development of critical discourse about works of art. It exercises the student’s ability to analyze the activity of making sculpture in particular and advances the student’s understanding of how to proceed in the studio. Problems of structure, materials, meaning, intention, and context are the subject of class discussion. 3 credits.
FA 393A, Section II Sculpture
Class is structured around the student’s projects. There is freedom in mediums to be used by each student, with a minimum requirement of showing three times during the semester, more times is encouraged. Critiques will be thorough, and there is an expectation of each student being able to think with, and through, the work in critique. Nothing is final, projects can be re-shown and altered, re-presented, and re-considered. The goal of the class is to be able to identify how the pieces work, in which discursive space they exist, how they can be read and experienced, and how much they embody the goals of each student. Open dialogue with respect to the work being shown, and to each other, is required. 3 credits

FA 394A Sculpture
This course takes a concrete approach to the development of critical discourse about works of art. It exercises the student’s ability to analyze the activity of making sculpture in particular and advances the student’s understanding of how to proceed in the studio. Problems of structure, materials, meaning, intention and context are the subject of class discussion. 3 credits. One-semester course.

FA 397A Sculpture
This course takes a concrete approach to the development of critical discourse about works of art. It exercises the student’s ability to analyze the activity of making sculpture in particular and advances the student’s understanding of how to proceed in the studio. Problems of structure, materials, meaning, intention and context are the subject of class discussion. 3 credits. One-semester.

Studio Electives

FA 281 Project in Sound Art
This class will introduce strategies for understanding and participating in the aural world. The course is divided into specific weekly topics, including acoustic ecology, circuit-bending, radio transmission, synaesthesia and others. Screenings, readings and discussion are supported by hands-on workshops in capturing, manipulating and reproducing sound in unconventional ways. Grading is based on three student projects and participation in class discussions. 3 credits. One-semester course. May not be repeated.
FA 301 **Teaching a Collaborative Social Practice**
As a practicum, this course invites students to actively explore the evolving role of the artist engaged in teaching as an art practice. The aim is to help the undergraduate who is currently teaching or who has interest in teaching in The Saturday Program. Through the course students will begin to frame pointed questions, such as: What is art? What is architecture? What constitutes community? What kind of societal questions can art/architecture raise while still being art/architecture? How can human interaction be seen and understood as a work of art or as architecture? Introductions to artists, art collectives and institutions that hold varied approaches to the notion of community, education, social discourse and positionality will also be essential to the learning environment. **3 credits.**

FA-384A-1 **Projects: Exhibition: Design and Practice**
This practical studio course will design and produce exhibitions. We will explore critical theory and histories only to the extent that they enable this practice. The function and habits of the contemporary museum and its supporting partner, the commercial gallery, are under tremendous critical and social pressure. Vital interventions by artists into the appearance and function of these institutions have proved to be explosively important to what art can and could do.

The course proposes that architectural space, catalogs, signage, and archives are opportunities for the public presentation of artistic invention. Students will be encouraged to approach public display beyond the containment of single practices, authors, or disciplines. Transfigured by formal arrangement, the conditions of an exhibition’s ability to address consciousness, community, education, and social reality will be our subject. Students will use the exhibition spaces, archives, and histories of the Cooper Union as well as sites and contexts beyond campus, when possible. *Open for Juniors and Seniors.*

FA-384A-2 **Projects**
This course is open to all third- and fourth-year students who intend to initiate or pursue a longer term (longer than a semester) art project. Students are expected to present their work-in-progress weekly, to research the works of other artists, writers, and thinkers, and to participate actively in class discussions. *Open for Juniors and Seniors.*
FA-384A-3 Projects: Art as Institutional Therapy
Do institutions need therapy? Yes, many probably do. This class explores the concept and legacy of institutional therapy in relation to art making through field trips, visitors, discussions, presentations, readings, class critiques, and a collaborative assignment. We will approach institutional therapy as a creative, nonhierarchical practice for transforming systems within institutions in order to generate change from within. Originally a term used in alternative psychiatry, we will consider its use in relation to broader institutions such as settler colonialism, capitalism, and the art system. This class will ask questions such as: Which institutions are in need of remediation and what might an art practice that can do that look like? How does institutional therapy compare to institutional critique as an art practice? Can art ‘heal’ or even shift systemic issues, and if so, how could desire be an important component of that practice? No prerequisites.

FA 490A Independent Study in Performance
1-3 credits. Requires approval of instructor and the Dean of the School of Art

FA 491A Independent Study in Sound Art
1-3 credits. Requires approval of instructor and the Dean of the School of Art
 ADMINISTRATION, FACULTY AND STAFF

Deans
Mike Essl
Dean
Associate Professor
Adriana Farmiga
Associate Dean
Adjunct Professor

Administration
Doug Ashford
Professor
Academic Advisor
Frances Green
Assistant Dean, School of Art
Tia Jeung
Art School Budget Manager
Beverly Joel
Adjunct Professor
Director of Off-Campus Programs, School of Art
Roberta Lee
Administrative Manager to the Dean of the School of Art
Emmy Mikelson
Manager of Technicians
Laura Mircik-Sellers
Archive Coordinator, Herb Lubalin Study Center of Design and Typography
Zak Nguyen
Administrative Assistant
Corinna Ray
Coordinator of Student Exhibitions and Special Projects
Raquel Sapeg
Director of Academic Operations
Alexander Tochilovsky
Curator, Herb Lubalin Study Center of Design and Typography

Full-Time Faculty
Dennis Adams
BFA, Drake University, Des Moines, IA; MFA, Tyler School of Art, Philadelphia, PA
Doug Ashford
BFA, The Cooper Union, New York, NY
Fia Backstrom
Undergraduate degree, University of Stockholm and Columbia University; MFA eq., Konstfack Royal College of Arts and Craft, Stockholm, Sweden
Mike Essl
BFA, The Cooper Union, New York, NY; MFA, Cranbrook Academy of Art, Bloomfield Hills, MI
Coco Fusco
BA, Brown University, Providence, RI; MA, Stanford University, CA; PhD, Middlesex University, London, England
Leslie Hewitt
BFA, The Cooper Union, New York, NY; MFA, Yale University, New Haven, CT
Cristóbal Lehyt
BA, Hunter College, New York, NY
Walid Raad
BFA, Rochester Institute of Technology, Rochester, NY; MA, University of Rochester, Rochester, NY; PhD, University of Rochester, Rochester, NY
Lucy Raven
BFA, University of Arizona, Tucson, AZ; MFA, Bard College, Annandale-on-Hudson, NY
William Villalongo
BFA, The Cooper Union, New York, NY; MFA, Tyler School of Art at Temple University, Philadelphia, PA

Adjunct and Visiting Faculty
Golnar Adili
BFA, University of Virginia; March University of Michigan
Marina Ancona
Colleen Asper
BFA, Maryland Institute College of Art; MFA, Yale
Firelei Baez
BFA, The Cooper Union; MFA, Hunter College, NY
Aden Bailey
BFA, The Cooper Union
Dion Bailey
B.S., Kingston University
Yto Barrada
Jack Barth
BA, California State University; MFA, University of California at Irvine
Thomas Beard
BS, University of Texas at Austin
Mildred Beltre
BA, Carleton College; MA & MFA, University of Iowa
Omar Berrada
BSc, Ecole Polytechnique; MA, Université Paris; MSc, Ecole Nationale des Ponts et Chaussées; MA (AbD), Université Marne-la-Vallée
William Bevington
BFA, The Cooper Union, New York, NY
Tony Bluestone
BA, Bard College, Annandale-on-Hudson, NY; MFA, Hunter College, New York, NY
Jacob Burckhardt
BA, University of Pennsylvania

Lea Cetera
BFA, The Cooper Union;
MFA, Columbia University

Shahrzad Changalvae
BA, Tehran University;
MFA, Yale University

Cara Di Edwardo
BFA, The Cooper Union

Joao Enxuto
BA, University of Connecticut;
MFA, Rhode Island School of Design

Hannes Famira
BA, Royal Academy of Fine Arts in The Hague, Netherlands

Adriana Farmiga
BFA, The Cooper Union;
MFA, Bard College

Daphne Fitzpatrick
BFA, OCAD University, Toronto ON

Barbara Glauber
BFA, SUNY Purchase College;
MFA, California Institute of the Arts

Fields Harrington
BFA, University of North Texas;
MFA, University of Pennsylvania

Julie Harris
BFA, The Cooper Union

Emma Hedditch
BFA, Sheffield Hallam University

Camille Hoffman
BFA, California College of the Arts;
MFA, Yale University

Esinat Imber
BFA, The Cooper Union;
MFA, Stanford University

Tatiana Istomina
Diploma, Moscow State University;
MFA, Parsons The New School for Design;
Ph.D., Yale University

Beverly Joel
BFA, The Cooper Union

Jonathan Key
BFA, Rhode Island School of Design

Steven Kreis
B.S., University of Missouri;
MA, Hunter College

Jessica Kuronen
BFA, The Cooper Union

Yve Laris Cohen
BA, University of California at Berkeley;
MFA, Columbia University

Karl Larocca
BA, Oberlin College

Carolyn Lazard
BA, Bard College;
MFA, University of Pennsylvania

Kevin Leonard
BFA-MICA

Simon Liu
BFA, New York University

Akemi Martin
BA, University of California, Santa Barbara

Yuri Masnyj
BFA, The Cooper Union

Mores McWreath
BFA, The Cooper Union;
MFA, University of Southern California

Jennifer Todd Reeves
BA, Bard College;
MFA, University of California, San Diego

Jose Rodriguez
BA, University of California, Santa Cruz;
MFA, Yale

Mackenzie Stroh
BFA, University of Art and Design, Vancouver;
MFA, Concordia University

Tida Tep
BFA, Virginia Commonwealth University

John Vondracek
BFA, The Cooper Union

Emily Waters
BFA, University of Illinois

Amy Westphahl
BFA, The Cooper Union;
MFA, Hunter College

Andrew Wilhelm
BFA, Kutztown University;
MFA

Jennifer Williams
BFA, The Cooper Union;
MFA, Goldsmith’s College

Staff

Jazmine Catasus
Technical Assistant Printmaking

Lea Cetera
Adjunct Professor
Technical Assistant Art & Architecture Shop

Sarah Dahlinger
Technical Assistant Printmaking

David Derish
Technical Assistant Painting/Drawing

Pedro Gonzalez
Technical Assistant Film/Video

Harley Grieco
Technical Assistant Photography

Anna Hostvedt
Senior Painting Office Coordinator

Adjunct Instructor
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haisi Hu</td>
<td>Technical Assistant Film/Video</td>
</tr>
<tr>
<td>Jes Hughes</td>
<td>Technical Assistant Printmaking</td>
</tr>
<tr>
<td>Anna Hutchings</td>
<td>Technical Assistant Art & Architecture Shop</td>
</tr>
<tr>
<td>Michael Ibok</td>
<td>Technical Assistant Printmaking</td>
</tr>
<tr>
<td>Einat Imber</td>
<td>Adjunct Instructor Technical Assistant Printmaking</td>
</tr>
<tr>
<td>Marc Jean-Gilles</td>
<td>Technical Assistant Art and Architecture</td>
</tr>
<tr>
<td>Jamerry Kim</td>
<td>Director, Saturday Program</td>
</tr>
<tr>
<td>Georgia Kung</td>
<td>Technical Assistant Printmaking</td>
</tr>
<tr>
<td>Marta Lee</td>
<td>Technical Assistant Painting/Drawing</td>
</tr>
<tr>
<td>Kevin Leonard</td>
<td>Adjunct Professor Head Technician, Art & Architecture Shop</td>
</tr>
<tr>
<td>Marit Liang</td>
<td>Technical Assistant Film and Video</td>
</tr>
<tr>
<td>Marjet Long</td>
<td>Director, Web Development and Design, Adjunct Instructor, School of Art</td>
</tr>
<tr>
<td>Justin Lubliner</td>
<td>Technical Assistant Photo</td>
</tr>
<tr>
<td>Kian McKeown</td>
<td>Technical Assistant Painting Office</td>
</tr>
<tr>
<td>Eric Monasterio</td>
<td>Adjunct Instructor; Senior Technician and Shop Coordinator, Art & Architecture Shop</td>
</tr>
<tr>
<td>Daniel Morris</td>
<td>Adjunct Instructor; Technical Assistant Printmaking</td>
</tr>
<tr>
<td>Alex Musto</td>
<td>Technical Assistant Film/Video</td>
</tr>
<tr>
<td>Scott Nobles</td>
<td>Adjunct Professor; Head Technician and Digital Specialist, Printmaking</td>
</tr>
<tr>
<td>Nancy Paredes</td>
<td>Technical Assistant Printmaking</td>
</tr>
<tr>
<td>Megan Reilly</td>
<td>Technical Assistant, Photo</td>
</tr>
<tr>
<td>Oskar Russakis</td>
<td>Technical Assistant</td>
</tr>
<tr>
<td>Lily Sheng</td>
<td>Technical Assistant Film and Video</td>
</tr>
<tr>
<td>Amy Westpfahl</td>
<td>Director of Admissions, Irwin S. Chanin School of Architecture and School of Art</td>
</tr>
<tr>
<td>Andrew Wilhelm</td>
<td>Adjunct Professor; Technical Assistant, Art & Architecture Shop</td>
</tr>
<tr>
<td>Jennifer Williams</td>
<td>Adjunct Professor; Head Photography Technician</td>
</tr>
<tr>
<td>Meryl Williams</td>
<td>Technical Assistant Film/Video</td>
</tr>
<tr>
<td>Cheng-Daw Wu</td>
<td>Technical Assistant Painting/Drawing</td>
</tr>
</tbody>
</table>
Overview

With an average enrollment of about 450 undergraduate students, engineering is the largest of The Cooper Union’s schools. The school maintains small class sizes in courses and laboratories in order to provide for personal attention. It offers bachelor of engineering (B.E.) degree programs in chemical, civil, mechanical and electrical engineering, accredited by the EAC commission of ABET*.

In addition, the school offers a general engineering program (B.S.E.). This program empowers students to create their own curricula (within carefully set parameters) in those areas of engineering that cross traditional boundaries—for example, computer science, entrepreneurship, biomedical, energy, sustainability, infrastructure, environmental, mechatronics, robotics, etc.

The B.S.E. program provides an excellent preparation for graduate work in law, medicine, business, finance, etc.

The integrated master’s program offers the opportunity to earn both a bachelor’s and a master’s degree in an engineering discipline at The Cooper Union within four, five or six years.

Degree programs are designed to prepare students to enter the workplace immediately after graduation or to pursue graduate study. An extraordinary number of Cooper Union engineering graduates go on to earn Ph.D. degrees at the nation’s most prestigious graduate schools. Others go on to study in fields such as medicine, law or business. Many graduates rise to leadership positions in industry, education and government.

The early curricula in engineering are based on intensive study in the sciences, mathematics, computer science and engineering sciences, which serve as preparation for deeper immersion within the engineering fields. Building on this strong base of mathematics and sciences, and emphasizing the integration of knowledge, these curricula promote an understanding of nature, the limitations of our present knowledge and the potential for advancing that knowledge.

Strong mathematical and computer skills are developed in all engineering students. This includes the ability to mathematically model and solve problems algorithmically, in a suitable language, and to use existing commercial packages for analysis and
design. Students are expected to be highly computer literate and gain proficiency in specialized packages that are used both in elective and in required courses. The faculty expect assignments to be carried out using computers in appropriate ways, both as a design tool using packages and also as a platform for creating original software.

Defining characteristics of the School of Engineering’s programs are the emphasis on project-based learning and opportunities for undergraduate research. Students and their peers regularly join the faculty in solving real-life problems that exist in contemporary society. Multi-disciplinary teams, frequently cooperate with outside professionals, who act as mentors. Superior analytical abilities and thorough grounding in engineering fundamentals and design enable students to collaborate on these projects. Results may be published, presented at conferences or even patented.

A strong background in engineering design threads throughout the curriculum, starting with the first year. These design experiences take into consideration factors such as environmental issues, sustainability, economics, teamwork, societal impact, safety and political climate—showing students that a “design” is much more than a purely technological solution.

Some design problems are offered in collaboration with foreign universities to increase awareness of the global nature of the engineering profession (e.g., The Cooper Union’s study abroad and international exchange programs). Others may involve collaboration with industry, hospitals and/or other US universities.

Diverse electives are offered so that students can add a background in business and finance, additional mathematics and sciences or a “concentration” in an additional engineering area.

Like The Cooper Union’s other schools, the Albert Nerken School of Engineering is intimately involved with the New York metropolitan area. Sometimes, the city and its infrastructure are used as a laboratory. The school also draws on the region’s abundant talent and resources, including an outstanding array of engineers and scientists employed at major corporations, governmental agencies and consulting firms in the New York region. The school calls on physicians, lawyers and other specialists to collaborate on research and mentoring and to give unique insights into contemporary problems and social issues confronting modern engineers. Many of these professionals are alumni and may serve as adjunct faculty members lending a dynamism to the classroom.
Students benefit from an uncommonly close interaction with dedicated faculty, some of whom are alumni, in a conservatory style environment. Our faculty bring their diverse experiences to the classroom and laboratory setting and serve as role models to our students. Our students are encouraged to participate in The Cooper Union’s rich seminar and cultural programs as well as to attend talks by guest speakers. They join various professional societies, many of which have chapters at The Cooper Union. Students are inspired to qualify for membership in national engineering honor societies. They also participate in student government and sports, and take advantage of the vast cultural environment offered by New York City and the neighborhood.

The School of Engineering strongly encourages undergraduate research activities and permits juniors and seniors to register for graduate level courses, when deemed appropriate. This enrollment does not guarantee admission to the master’s program however. A Cooper Union undergraduate may declare the intent to complete an integrated degree in the second semester of the junior year or apply to the graduate program (Master of Engineering) in one of the degree-granting departments during the second semester of the senior year.

Graduates of The Cooper Union are recruited by major national and international corporations, consulting companies, new ventures and graduate schools nationwide. Alumni are found in the top management and research leadership of many American corporations; hold key positions in federal, state and city agencies; and distinguish themselves on university faculties and administrations nationwide. Through their many and varied professional accomplishments, alumni have earned for the school its reputation for excellence.
CURRICULUM

Bachelor of Engineering

The requirements for the bachelor’s degree programs must be completed within four years of first registration, except with the explicit consent of the dean/associate dean. Requests for extension must be presented in writing to the dean’s office prior to the sixth semester of registration (or the end of junior year). It is the responsibility of the student to maintain normal and reasonable progress toward the degree.

Courses may be taken at other institutions for credit with prior advisor(s) approval only. If the course is to substitute for a Cooper Union course, prior approval must be given by the chair of the appropriate department in the engineering school or by the appropriate school or faculty for courses outside engineering. The student is responsible for all costs incurred. As a general matter, many courses simply may not be taken elsewhere (e.g., Physics I). In order to get a course pre-approved, bring as much course documentation as possible to the Chair of the appropriate department to have the course assessed. These materials must include at least the syllabus and textbook. The course must be judged to be equivalent to one taught at Cooper or an appropriate high academic standard. Note that only grades “B” or better can be transferred (not B-) and the grade will not be factored into your G.P.A.

Additionally, ABET accreditation requires:
• One year of a combination of mathematics and sciences (some with experimental experience) appropriate to the discipline,
• One and a half years of engineering topics consisting of engineering sciences and engineering design appropriate to the student’s field of study and
• A general educational component that complements the technical content of the curriculum and is consistent with the program and institutional objectives.

In order to graduate, all students must meet the following conditions:
• A minimum of 135 credits are required
• Satisfaction of all program curricula
• Satisfaction of the residence study requirements
• A minimum grade point average (G.P.A.) of 2.0
• A minimum grade point average (G.P.A.) of 2.0 for the junior and senior years combined
Faculty Advisors
All first-year students have the same faculty advisor. For subsequent years, students will be assigned one, two or more advisors each, appropriate to their field of study. Each student’s program is established in consultation with his or her advisor(s); changes can only be made with approval of the advisor(s).

Humanities and Social Sciences
The requirements in this area are satisfied by courses offered by The Cooper Union Faculty of Humanities and Social Sciences or by transfer credit for liberal arts courses taken at other institutions. The courses in this area are intended to provide both breadth and depth and should not be limited to a selection of unrelated introductory courses. The Cooper Union liberal arts courses, shown elsewhere in the Faculty of Humanities and Social Sciences catalog section, have prefixes H, S and HTA. The basic courses HSS1–HSS2 and HSS3–HSS4 are prerequisites for all higher level courses in the same prefix family. H and S courses carry three credits each; HTA courses carry two credits. Engineering students should consult with the dean of Humanities and Social Sciences about choice of courses to satisfy particular interests.

Transfer credits for liberal arts courses must be approved by the dean of Humanities and Social Sciences. Courses that cannot be used to satisfy the Humanities and Social Sciences requirement are:
• Language skills courses such as introductory foreign language, public speaking, report writing
• Craft and performance courses unless accompanied by theory or history
• Subjects such as accounting, finance, engineering economy, industrial management, personnel administration

Some programs require “free electives or non-technical electives.” For transfer credit for particular courses, the School of Art or the School of Architecture may be a more appropriate authority to sanction the transfer. Students who are uncertain should approach the Office of the Dean of Engineering in the first instance and be directed to the correct group of faculty.
Free Electives/Non-Technical Electives
Some programs require “free electives or non-technical electives.” For transfer credit for particular courses, the School of Art or the School of Architecture may be a more appropriate authority to sanction the transfer. Students who are uncertain should approach the Office of the Dean of Engineering in the first instance and be directed to the correct group of faculty.

Program Requirements
The specific programs for entering students are shown in detail in the curriculum tables. From time to time, changes are made to these programs following curricular developments authorized by the faculty. Advances in technology and new technologies are closely monitored and are reflected by adjustments in all the engineering programs.

Course Substitutions and Credits
A student may request to substitute for a required course or courses given in the School of Engineering provided that:
- The substitution is limited to 12 credits maximum toward the total number of credits required for graduation,
- The substitution is approved by the dean/associate dean and program advisor(s) and
- ABET accreditation requirements are not violated.

The Chemical Engineering Department does not permit the substitution of any courses.

The number of academic credits for each course generally is based on the following relationship:
- 1 credit per contact hour in class
- 0.5 credit per contact hour of laboratory

This relationship was established on the basis that generally two hours of preparation are expected of the student for every contact hour in class or project activities and generally one hour of preparation is expected for every contact hour of laboratory.

Residence Study Requirement
A candidate for a bachelor’s degree must be enrolled during the entire academic year immediately preceding the granting of the degree and must carry at least 12 credits per semester during that period. Also, the candidate must have been enrolled for a minimum of four semesters at The Cooper Union as a full-time student for the bachelor’s degree.
ACADEMIC STANDARDS
AND REGULATIONS

Academic Integrity

Faculty at Cooper Union are committed to preserving an environment that challenges every student to realize his or her potential. You are expected to provide your best effort and will be supported to produce original work of the highest caliber.

Plagiarism is the presentation of another person’s “work product” (ideas, words, equations, computer code, graphics, lab data, etc.) as one’s own. Whether done intentionally or unintentionally, plagiarism is not tolerated in the School of Engineering.

There are many types of plagiarism, some of which are listed below. (The list is not exhaustive. Speak with the appropriate faculty member or dean or associate dean of engineering if you are uncertain as to what constitutes ethical conduct in a particular situation.)

You are plagiarizing if:

• You present as your own work product a homework assignment, a take-home exam or a class project that includes the efforts of other individuals. The contributions of other individuals (if permitted by your instructor) must be acknowledged in writing on the submitted assignment, exam or project.

• You copy the work of other students on an in-class examination or communicate with other individuals in any fashion during an exam.

• You submit as part of a homework assignment, take-home exam or class project material that has been copied from any source (including, but not limited to, a reference book, periodical, the Internet) without properly citing the source, and/or without using quotation marks. It is also prohibited to submit such materials in a minimally altered form without proper attribution. Improperly copied material might include text, graphics (computer or otherwise), computer source code, etc.

Other prohibited acts of academic dishonesty include (but are not limited to):

• Attempting to obtain a copy of an examination before it is administered.

• Dishonesty in dealing with a faculty member or a dean, such as misrepresenting the statements of another faculty member.

• Bringing notes into an examination when forbidden to do so.
• Bringing any device into an examination (computer/ smartphone/ calculator), which permits the retrieval of examination-related materials unless expressly permitted by the instructor.
• Bringing any device into an examination that allows communication with other individuals or computers or computer databases unless expressly permitted by the instructor.

Faculty members may not unilaterally resolve incidents of academic dishonesty. Each faculty member is required to report all cases of plagiarism or academic dishonesty to the engineering dean’s office in a memorandum. If documentary evidence of the incident exists, it should be attached. The dean’s office, in consultation with the faculty member and the student, will select from the following sanctions: a grade of F for the assignment, a grade of F for the course or dismissal of the student from the school. A record of all incidents will be kept in the dean’s office and considered for second-time offenders. Students who are dismissed because of academic dishonesty should be aware that incident reports and any responsive actions by the dean’s office or Academic Standards Committee become part of their permanent record.

Sexual or Racial Harassment
Such behavior will not be tolerated. Incidents should be reported immediately. Students should see the dean or associate dean, and also the dean of students as soon as possible.

Code of Conduct
Students are required to read and abide by The Code of Conduct.

Transfer Credit
Students, at their own expense, desiring to register for courses at another institution for transfer credit to The Cooper Union must have appropriate approval in advance. For courses in mathematics, sciences or engineering, this approval is to be obtained from:
• the department responsible for the course at The Cooper Union and
• the dean or associate dean of engineering.

For liberal arts courses, approval is to be obtained from the dean of Humanities and Social Sciences. In order that transfer credits from another school be accepted, a grade of B or better is required. (A grade of B- or worse cannot be transferred). An exception may be granted in special circumstances only upon formal appeal to the Academic Standards Committee. Transfer credit is never granted for paid summer internships or work experience or paid or unpaid research.
Grades of Record

The definitions below deal with the student’s attainment in the formal work of the subject. Nevertheless, it should be understood that such essential qualities as integrity, adherence to class regulations, enthusiasm, motivation, clarity in presentation of work and sense of obligation, together with ability to use the English language correctly and intelligibly, are reflected in the grade. The course grade is assigned by the instructor in conformity with definitions indicated in this section.

The grade **A** indicates a superior and comprehensive grasp of the principles of the subject. It denotes an ability to think quickly and with originality toward the solution of difficult problems.

The grade **B** indicates evidence of a good degree of familiarity with the principles involved in the subject. It implies less originality and a tendency to hold to patterns of thought presented in the formal subject matter.

The grade **C** indicates an average knowledge of the principles involved in the subject and a fair performance in solving problems involving these principles. This grade implies average ability to apply the principles to original problems.

The grade **D** indicates a minimum workable knowledge of the principles involved in the subject. This grade denotes low achievement and therefore the number of such grades permitted any student is limited in a manner prescribed by the section on Scholastic Standards.

The grade **F** indicates an unsatisfactory understanding of the subject matter involved. A grade of F may be made up only by repeating the subject in class; both the new grade and the new credits and the original grade and credits are included in the permanent record and in the grade point average. A student who receives an F grade in a repeated course is a candidate for dismissal by the school’s Academic Standards Committee.

The Incomplete (I) Grade The designation of I indicates that the work of the course has not been completed and that assignment of a grade and credit has been postponed. This designation will be given only in cases of illness (confirmed by authorized physician’s letter) or of other documented extraordinary circumstances beyond the student’s control. The I designation will be given only with the approval of the dean or associate dean of engineering. At the time of submission of an I designation, the instructor will indicate whether the student’s progress to that point has been satisfactory or unsatisfactory, offering an estimation of grades whenever possible as a means of assisting the Academic Standards Committee in their deliberations.
The deadline for removal of an l designation will be determined by the instructor, but will not be later than six weeks after the start of the spring semester for students who receive such a designation in the fall semester and not later than one week after the start of the fall semester for students who receive such a designation in the spring semester. If the l is not removed within the set time limit, either by completing the work in the subject or by passing a re-examination, the l will automatically and irrevocably become an F unless the dean or associate dean of engineering, in consultation with the instructor, extends the time or the student withdraws from the school.

Grade Point Average or Ratings To determine academic ratings, numerical equivalents are assigned to grades as follows: A is represented by 4, B by 3, C by 2, D by 1 and F by 0. The sum of the products of credits attempted and grade equivalents earned in a period at The Cooper Union, divided by the sum of credits for that period, is the rating for that period.

Only Cooper Union grades of A, B, C, D and F will be used in determining ratings. Grades from other colleges and other designations such as l and W are not used in Cooper Union ratings.

Grade Changes A change in an official grade of record, other than the designation I, cannot be made by the dean of Admissions and Records without the express consent of the dean or associate dean of engineering. Grade changes will not be accepted after one year has elapsed from the completion of the course.

Final Examinations Final examinations are held in most subjects, except in cases when content does not lend itself to formal examination, such as laboratory or project work. In certain other subjects, the class record may be ample for determining student standing. The decision on giving a final examination in a given subject is made by the instructor.

Academic Probation, Withdrawal and Dismissal

Probation is the consequence of unsatisfactory scholarship. It is a warning that may involve a compulsory reduction of academic load, interviews with an assigned advisor and additional academic counseling. A student on academic probation must fulfill conditions as prescribed by the Academic Standards Committee.

• The records of all students may be reviewed by the office of the dean of engineering for recommendations to the Academic Standards Committee for appropriate action at any point in the student’s career.
• Students may be required to withdraw or resign from The Cooper Union based on a single semester’s academic performance, a cumulative GPA lower than 2.0, and/or infractions of the academic integrity policies.

• The Academic Standards Committee reserves the right to determine probation and/or dismissal at any point in the student’s career for appropriate academic issues.

• A student whose semester grade point average is below 2.0 is on automatic probation and is a candidate for dismissal by the committee.

• Estimates of grades in subjects with I designations may be included in all committee deliberations.

• Students who fail to register will have their records annotated: “Dropped: Failure to Register”

Students seeking readmission to the School of Engineering with a separation from Cooper Union of less than two years must apply through the Academic Standards Committee. The student must first contact the Dean of Admissions and Chair of Academic Standards to discuss the measures required to meet before the Academic Standards Committee. Students seeking readmission for the fall term must contact the Dean of Admissions and Chair of Academic Standards no later than April 1 to schedule an appointment for the June Academic Standards meeting.

Students seeking readmission to the School of Engineering with a separation from Cooper Union of more than two years must apply through the Office of Admissions and adhere to the transfer application requirements. Students who believe that a modification of their status should be made because of extenuating circumstances may petition, in writing, the Academic Standards Committee.

Change of Program

Adding a Course A student is permitted to add a course only during the first week of a semester, during the drop/add period, and only with the advisor’s approval.

Adding a course after the drop/add period is not permitted even if the student has been attending the class.

Dropping a Course A student may drop a course during the first week of the semester, during the drop/add period, with the advisor’s approval.

A course dropped during the first week of the semester will be deleted from the transcript.
Withdrawing from a Course A student anticipating inability to continue an assigned program should immediately see his or her advisor. A student’s program may be adjusted at the discretion of and after conferring with the advisor and the dean or associate dean of engineering, but only in cases where scholastic performance is impaired by conditions beyond the control of the student, such as health or home conditions. After the drop/add period a student may withdraw from a course through the eighth week of the semester. A grade of W will appear on the transcript. A student who stops attending a course without permission of the instructor and the dean or associate dean will receive a grade of WU; however, the instructor is free to record a grade of F in such a case.

A student may lighten his or her academic load and receive a W grade after the eighth week of classes only with the approval of the course instructor, the advisor, and the dean or associate dean. It is the policy of the faculty and the Office of the Dean not to approve any withdrawal after the eighth week of classes except under extreme, extenuating circumstances.

A student is not permitted to drop or withdraw from a course if doing so would impede satisfactory progress towards the degree.

Repeating a Course A course may be repeated if a student has failed the course or, with appropriate approval been allowed to withdraw from the course. When a course is repeated, the grade earned when the course was repeated is calculated into the G.P.A.

Course Designation

<table>
<thead>
<tr>
<th>Course</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>Bio</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>ChE</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Ch</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>CE</td>
</tr>
<tr>
<td>Computer Science</td>
<td>CS</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>ECE</td>
</tr>
<tr>
<td>Engineering Sciences</td>
<td>ESC</td>
</tr>
<tr>
<td>Interdisciplinary Engineering</td>
<td>EID</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Ma</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>ME</td>
</tr>
<tr>
<td>Physics</td>
<td>Ph</td>
</tr>
</tbody>
</table>

Students should consult official class schedules for courses offered in a given semester.
Be advised that each school at The Cooper Union offers certain electives that are
open to all students; consult each school’s course listing.

Unless otherwise indicated, credit listings are for single semesters. Courses are not
generally offered in the summer.

Definitions

• A free elective is any course (for which a student is qualified) given within The
Cooper Union. Foreign language courses do not count as free electives.
• The status advanced engineering elective is to be determined by the advisor(s) and
the Office of the Dean. Normally, such courses will require prerequisites and are
usually taken by juniors and seniors.
• A minimum of 12 credits of engineering electives must be at an advanced level.

Honors and Special Programs

Dean’s List The Office of Admissions and Records determines a Dean’s List twice a
year, at the end of each semester, on the basis of the record of the completed grade
in every subject at the official end of the grading period. To qualify, a student must
have a 3.5 or better semester grade point average for a study program of at least 12
credits during that semester with no grade lower than C and no grades of Incomplete
(I). Note: Students may petition the dean/associate for reconsideration in the Dean’s
List after the Incomplete (I) has been made up.

Course Overload An overload in the first year consists of a credit total greater than
the standard load for that semester in a student’s respective program. A student
having a grade point average of 3.0 or better may take an overload of one course in
any given semester with the approval of the freshman academic advisor and the
written approval of the dean or associate dean. In all other cases, overload is any
credit load over the designated load for that semester in the student’s program
curriculum and requires approval of the student’s academic advisor(s). Overload
beyond 21.0 credits also requires the written permission of the dean/associate dean
and no overload is permitted for students with a prior semester G.P.A. of less than 3.0
or a cumulative G.P.A. of less than 3.0. Requests for overloads must be submitted to
the dean/associate dean during the add period of that semester together with written
advisor’s approval, and only after all grades from the previous semester(s) have
been entered.
Graduation with Honors Each graduating senior in the School of Engineering who has achieved an overall cumulative rating of 3.8 or higher is awarded the degree with the notation summa cum laude. Magna cum laude requires a G.P.A. of 3.7 or higher and cum laude requires at least a 3.5 G.P.A.

Curricular Transfers A student wishing to change his or her major should first discuss the plan with his or her current advisor(s) in the current major and the chair of the new major. Transfer is at the discretion of the dean’s office and the receiving department. It may be affected by the student’s grades and availability of program resources. Students who request a change in major must consult with the policies of the department they wish to transfer into. It becomes effective when the required petition form, approved by the dean or associate dean of engineering, has been delivered to the Office of Admissions and Records. First-year students may not change their area of study until the end of the year when two semesters’ grades are available. A G.P.A. of 3.0 or better is required for approval to transfer curriculum.

Pre-Medical, Pre-Law or Pre-Business Studies Upon completion of the engineering degree, some graduates may decide to attend medical, dental, business or law school. Most of the prerequisites for such a course of action are offered at The Cooper Union. For medical school or dentistry, students are advised to take one year of organic chemistry and one year of biology. For law or business, additional economics, political science and professional ethics courses are useful. Students should consult their advisor(s).

Study Abroad The Cooper Union offers suitably qualified, approved students the opportunity to participate in research programs at various foreign universities during the summer. For example, students have attended universities in England, Ireland, Scotland, Australia, Hong Kong, Germany, China, Japan, Italy, Spain, Ghana and France. Cooper Union credit (up to six credits at the 300 level) is granted upon successful completion of the research work, presentation of a written report and its approval by the Office of the Dean. Three credits are considered for technical credit and may count towards the elective science/engineering requirements for the student, the remaining three credits are non-technical credits that do not satisfy the HSS elective requirements of the degree. Applications are available in the dean’s office in mid-January. (Students on probation are ineligible for this program). Credit is only allowable for exchange programs authorized by The Cooper Union School of Engineering.

Professional Development Mastering the technical aspects of an engineering field is only part of being a successful engineer. There are many other areas that go toward building and continuing a professional career.
MASTER’S DEGREE REQUIREMENTS

Cooper Union offers master’s degrees in chemical engineering, civil engineering, electrical engineering and mechanical engineering. The integrated bachelor/master of engineering program is intended to integrate work at the undergraduate and graduate levels and prepare graduates for entry into the engineering profession at an advanced level or for further graduate study.

See the application guidelines for the admissions procedure.

Cooper Union students applying for the 4 year undergraduate/graduate dual degree see instructions for application below.

See the course list for graduate level courses.

General Application Requirements

Applicants who are not Cooper Union graduates are expected to have a superior undergraduate record and to have given evidence of ability for independent work. Students are accepted on an academically competitive basis subject to the availability of an advisor and of suitable available facilities. Students have up to five years to complete their degree. They must declare whether they plan to pursue the thesis or non-thesis option by the end of their third year or when they complete 24 credits, whichever comes first. Once students declare the thesis option, they have four semesters to finish the program. Students may complete the degree requirements as part-time or full-time students in consultation with their advisor. Students receiving more than 50% scholarship or are in receipt of a Fellowship may be required to complete their degree on a different timeline.

Cooper Union Undergraduates A Cooper undergraduate degree does not guarantee admission to the graduate program. To be considered for admission to the master’s program, one must be a currently enrolled Cooper Union undergraduate, with a minimum 3.0 grade point average according to the major.
Integrated Degree: All Cooper undergraduates looking to earn their Master’s degree at Cooper fall within the integrated degree program. In an integrated program, there is only one transcript for the Bachelor of Engineering and Master of Engineering coursework, with one cumulative GPA. There are two types of integrated degrees:

1. The Dual degree: The Cooper Union Dual Degree Master’s Program is one in which the bachelor’s and master’s degree are awarded simultaneously after four years of study. Only the thesis option is available for the Dual degree. With the approval of their advisor, students apply credits from courses taken beyond those required for the Bachelor of Engineering towards the requirements for the Master’s degree. In the dual degree program, a student’s status remains as an “undergraduate” throughout the program, until award of the bachelor’s and master’s degree. To maintain undergraduate status, students are required to enroll in a minimum of 12 credits that are applied to the undergraduate degree each term.

Cooper Union undergraduates may declare the intent to complete a dual degree in the second semester of the junior year.

Students interested in the dual degree program should NOT submit an application to the graduate program via the admissions site. They should complete this form, obtain the appropriate signatures and submit it to the Deans office in the second semester of their Junior year. Please note: If a Cooper Union student interested in the dual degree program fails to follow this instruction, the submitted application will be rejected and the application fee will not be refunded.

2. 4+ degree: The Cooper Union 4+ Master’s Program is one in which a Cooper Union undergraduate student completes the undergraduate degree, receives the diploma and then begins the graduate degree program. Students interested in the 4+ degree should apply to the Master of Engineering program via the admissions site in one of the degree-granting departments during their senior year.

Graduates of Other Colleges The School of Engineering may admit outstanding students or qualified practicing professionals, on a tuition basis, into the master’s degree programs. To be considered for admission, a student should have completed an engineering baccalaureate program that is accredited by the Accreditation Board for Engineering and Technology (ABET). In addition, an essay is required of all applicants who were not Cooper Union graduates. Applicants must submit official transcripts. Graduates of foreign institutions whose native language is not English are required to submit scores of the Test of English as a Foreign Language (TOEFL). Admitted students may be required to register for advanced engineering courses to make up for any deficiencies.
Thesis and Non-Thesis Requirements

The Albert Nerken School of Engineering offers both thesis and non-thesis Master of Engineering degrees. A minimum of 30 graduate level credits beyond the baccalaureate degree must be completed at The Cooper Union (in addition to resolving possible undergraduate deficiencies) for both the thesis requiring M.E. Program and the non-thesis M.E. Program. All graduate level credits, including possibly cross-listed upper level undergraduate credits, must be approved by a student’s academic advisor(s). A complete program of study is designed by the student with the assistance and approval of the academic advisor(s) and filed in the Office of the Dean of Engineering.

Each student is required to submit a thesis or project in their area of study, equivalent to a maximum of six credits (graduate level), for partial fulfillment of the master of engineering requirements. This project must be discussed with and approved by an advisor prior to being started. The thesis or project must be successfully presented orally by the student and submitted in written form.

Each of the engineering departments may have additional specific guidelines for the requirements for the M.E. degree. See links for Masters Program found under each department.

Thesis Requirements

The 30 credits offered for the thesis program degree must satisfy the following distribution:

- Major: Complete a minimum of 12 credits of graduate level courses in a chosen field
- Complete a minimum of 12 further credits of graduate level courses.
- Thesis Project: 6 credits

All four departments offer the thesis option.

Non-Thesis Requirements

The 30 credits offered for the non-thesis program degree must satisfy the following distribution along with a special project requirement:

- Major: Complete a minimum of 18 credits of graduate level courses in a chosen field
- Complete a minimum of 12 further credits of graduate level courses
Special Projects requirement can be fulfilled in one of two ways:

• Complete a graduate level independent study course (up to 3 credits)
• Submit a report to the Dean’s office of other course work that satisfies requirements for a graduate level course in which a grade of “B” or higher was received. If your home department has specific guidelines for the Special Projects requirement report, you should follow those guidelines. If there are no guidelines from your department, the Deans office suggests these basic structure and formatting requirements.

When the special projects requirement is completed this form should be filled out and submitted, along with any report, to the Dean’s office.

The Department of Chemical Engineering does not offer the non-thesis option at this time.

Other General Requirements

Grade Requirement A minimum overall grade point average of 3.0 is needed in all courses used to satisfy the 30 credit master’s degree requirement.

Appropriate Excess Credits Taken as an Undergraduate For Cooper Union baccalaureate holders, any credits of graduate level, taken as undergraduates in excess of their bachelor’s degree requirement, may be applied to the master’s degree, subject to the above cross-listing requirements and advisor approval.

Time Limitation Once students have declared they are following the thesis or non-thesis track, they must complete the program within four semesters. Students receiving less than 50% scholarship must declare no later than the end of their sixth semester of enrollment. Students who receive more than 50% scholarship are required to be full-time students, and must complete the program in either four or five semesters, dependent on their department’s requirements. Students who request and are granted an extension beyond the four, five or ten semesters of expected enrollment will be assessed a maintenance of matriculation fee of $3,000 per semester.

Fellowships One source of funding available to students wishing to pursue graduate study in engineering is the Enders Fund, governed by the will of Henry C. Enders and administered by the New York Community Trust. This fellowship is available to engineering graduates of The Cooper Union who have satisfactorily completed all required chemistry courses in the ChE curriculum and plan to do graduate work in chemistry, chemical engineering, chemistry-based environmental engineering, or chemistry-based bioengineering. Recipients are selected by the joint faculties of chemistry and chemical engineering.
Guidelines for Master’s Thesis

1. Graduate students conduct their thesis work under the close supervision and guidance of a full-time faculty member of the School of Engineering. The thesis advisor and Dean approve all copies of the thesis report after it has been successfully defended.

2. The master’s thesis is defended through an oral presentation during the fall or spring semesters only. This defense summarizes the content of the thesis and is open to all interested persons. School-wide distribution of an invitation should go to all engineering faculty, graduate students, and seniors within your major at least two weeks before the defense. An invitation should be submitted to the Dean’s Office for posting. If needed, the Dean’s Office will guide you through the preparation.

3. One digital copy of the thesis for faculty review must be made available in the Dean’s office a minimum of two weeks before the thesis defense.

4. After a thesis is successfully defended and the thesis report is finalized with the student’s advisor:
 a. Make sure your thesis follows the format outlined within this document: https://media2.proquest.com/documents/Preparing+Your+Manuscript+for+Submission+Revised+31jul2015.pdf
 b. The advisor should sign the thesis and you should email a searchable pdf file of your approved thesis to Beth Slack (beth.slack@cooper.edu). Alternatively, you can also email a dropbox link where the file can be downloaded.
 c. Your thesis should be digitally archived at https://www.etdadmin.com/cgi-bin/school?siteld=967 choosing the ProQuest Open Access Publishing Plus option. Please make sure to include the scanned copy of the signature page prior to submitting.
 d. Purchase any copies of the thesis through the ProQuest website.

5. The Office of Admissions & Records submits the list of engineering Master’s Degree candidates to the School of Engineering Committee on Academic Standards. The Committee in turn presents the recommended list of candidates to the engineering faculty at the semester-end faculty meeting, and to the Board of Trustees’ December/May meeting for approval of conferment of the Master of Engineering degree.
Engineering Minors

The Albert Nerken School of Engineering offers three minors to undergraduate students: Computer Science Minor and Mathematics Minor. Students can also obtain a Humanities and Social Science (HSS) Minor from our HSS Program.

BIOENGINEERING MINOR (BEM) The Departments of Mechanical and Chemical Engineering offer a minor in Bioengineering that is accessible to undergraduate engineering students across all majors. The Bioengineering Minor is flexible in that students, in consultation with their faculty advisor, can individually tailor their own minor by selecting elective courses from the list of available courses to better fit their major. Those who complete the requirements for the minor will have that indicated on their transcript.

COMPUTER SCIENCE MINOR (CSM) The department of Electrical Engineering offers a minor in Computer Science. Students seeking a minor in Computer Science must complete Data Structures & Algorithms I (ECE 264), Data Structures & Algorithms II (ECE 365), or a course selected from a list of alternative courses (see details), and 12 additional credits at the 300 or 400 level from a list of approved courses. At most six credits of 300 level courses that are required in the major can be applied toward the requirements for the Computer Science Minor.

MATHEMATICS MINOR The department of Mathematics offers a minor in mathematics. Students seeking a minor in mathematics must complete at least 15 credits of mathematics coursework in addition to the 17 credits required by every engineering department. These additional credits must include Mathematical Analysis I and II (Ma 350, 351), Linear Algebra (Ma 326), Modern Algebra (Ma 347) and an elective course in mathematics at or above the 300 level. An overall G.P.A., at graduation, of at least 3.0 among the mathematics portion (32 credits) of the program is required to obtain a minor in mathematics.

HUMANITIES AND SOCIAL SCIENCE MINOR Students who complete a minimum of 12 upper-division credits in a specific field of liberal arts may qualify for a minor in that field of Humanities and Social Sciences. Minors are offered and may be designated on student transcripts in the following five fields. Please contact HSS Academic Advisor, Professor Sohnya Sayres.

- Art History
- Economics and Public Policy
- History and Society
- Literature
- Science, Technology, and Society
Mission Statement

The Cooper Union’s Department of Chemical Engineering is committed to the development and graduation of engineering professionals. The department will promote student learning and understanding of science and engineering fundamentals and guide and encourage the application of this knowledge to the ethical, professional practice of chemical engineering. This will be undertaken in an environment that is responsive to new technologies and that encourages lifelong learning and research.

Program Educational Objectives

• Our graduates will attain professional careers where they apply their abilities to solve problems and meet challenges in engineering and non-engineering fields.
• Our graduates will join professional societies and/or attain professional licensure.
• Our graduates will grasp the concept of lifelong learning and appreciate the continuing development of new technologies and issues in the professional field.
• Our graduates will transition easily into their professional careers and demonstrate success in that role.
• Those graduates who pursue graduate studies and research at The Cooper Union and/or other institutions will have the necessary technical background, support and preparation to succeed.

Student Outcomes

• An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
• An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
• An ability to communicate effectively with a range of audiences
• An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
• An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

• An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

• An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

2022-23 Enrollment and Graduation

Freshman: 23
Sophomore: 24
Junior: 29
Senior: 19
Total: 95

In May 2020 the Department of Chemical Engineering graduated 21 students with a Bachelors of Engineering in Chemical Engineering degree.

Program Description

The education of the chemical engineer requires a strong foundation in chemistry and physics, which must be applied through the medium of mathematics to the solution of design, modeling, scale-up and control problems. A thorough knowledge is required of chemical structures, together with the energetic and kinetic relationships predicted in chemical reactions and molecular transport. The chemical engineer deals with the application of these principles to processes carried out on a variety of scales from micro-reactors to an industrial scale, in which matter undergoes changes in physical state, chemical composition or energy content. Emphasis is placed on developing creative ability; facts and theories are presented primarily to stimulate further thought and study in all fields of chemical engineering. Formal instruction is supplemented by visits to several plants and companies where the contribution of engineers can be observed and understood with respect to equipment, utilities, safety, costs, environmental impact, labor and supervision. The students get first-hand experience in the chemical engineering laboratory in applying engineering analysis to equipment performance, and in learning limitations of theoretical concepts. In the senior year, the student learns how to design chemical plants from fundamental data on new processes and to recognize areas of limited knowledge from the results of the design, and thus recommend pilot plant studies, if necessary.
Chemical engineering graduates find employment in a wide variety of areas. In addition to the chemical and petroleum industries, chemical engineers are involved heavily in the biomedical, materials and environmental fields. A chemical engineering education can also be easily applied to other interdisciplinary areas such as biochemical and biomedical engineering, energy resources, environmental engineering and materials science. As a result, chemical engineers are also finding employment in non-industrial institutions such as government, research think-tanks, policy study groups and even publishing companies.

If you have any questions or need additional information about the department, please contact our faculty directly using our faculty and staff pages or contact our department administrator.
Liz Leon, Chemistry & Chemical Engineering Departments
The Cooper Union School of Engineering
41 Cooper Square, New York, NY 10003
(212) 353-4370

Chemical Engineering Curriculum

Freshman Year Credits

<table>
<thead>
<tr>
<th>Fall Semester:</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>EID 102 Engineering Graphics</td>
<td>1</td>
</tr>
<tr>
<td>CS 102 Computer Programming for Engineers</td>
<td>2</td>
</tr>
<tr>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester:</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>15.5</td>
</tr>
</tbody>
</table>
Sophomore Year Credits

Fall Semester:

<table>
<thead>
<tr>
<th>Course and Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ChE 221 Material and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>ChE 211 Materials Science for Chemical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 231 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>19.5</td>
</tr>
</tbody>
</table>

Spring Semester:

<table>
<thead>
<tr>
<th>Course and Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.4 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 214 Physics III: Optics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>Ch 232.1 Organic Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>Ch 233 Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ChE 232 Chemical Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year Credits

Fall Semester:

<table>
<thead>
<tr>
<th>Course and Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ch 351 Instrumental Analysis Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Ch 361 Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>ChE 331 Chemical Engineering Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>ChE 341 Fluid Mechanics and Flow Systems</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring Semester:

<table>
<thead>
<tr>
<th>Course and Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 362 Physical Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>ChE 332 Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ChE 342 Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>ChE 352 Process Simulation and Mathematical Techniques for Chemical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>18</td>
</tr>
</tbody>
</table>
Senior Year Credits

Fall Semester:
- ChE 371 Chemical Engineering Laboratory I 2
- ChE 381 Process Evaluation and Chemical Systems Design I 3
- ChE 351 Separation Process Principles 3
- ChE 361 Chemical Process Dynamics and Control 3
- Engineering or Science Elective 3
- Humanities/Social Sciences Elective 3

Total Credits Fall Semester 17

Spring Semester:
- ChE 372 Chemical Engineering Laboratory II 2
- ChE 382 Process Evaluation and Chemical Systems Design II 4
- Engineering or Science Elective 3
- Free Elective 3
- Humanities/Social Sciences Elective 3

Total Credits Spring Semester 15

Total credits required for degree 135

The Chemical Engineering Department does not permit the substitution of any courses as outlined in the Course Substitutions and Credits section of the Bachelor of Engineering curriculum.

Concentrations

A concentration can be obtained by a student in chemical engineering taking any four (4) courses in one of the fields below. The courses require permission of the student’s adviser and the department chair. The courses listed are examples currently in The Cooper Union catalog. Note that some may require prerequisites or permission of the instructor. Additionally, note that it is not necessary to obtain a concentration in any field in order to graduate with a bachelor of engineering in chemical engineering.

Upon completion of the concentration a student should submit a list of courses that he or she wishes to be considered for certification to the department chair. Successful completion of the concentration will be acknowledged by a certificate from the department accompanied by a letter listing the concentration achieved and the courses taken.
Environmental Engineering
CE 344/Environmental Systems Engineering (also EID 344)
CE 343/Water Resources Engineering (also EID 343)
CE 414/Solid Waste Management (also EID 414)
CE 440/Industrial Waste Treatment Design (also EID 438)
CE 441/Water and Wastewater Technology (also EID 439)
CE 446/Pollution Prevention or Minimization (also EID 446)
CE 447/Stream and Estuary Pollution
CE 449/Hazardous Waste Management (also EID 449)
ChE 447/Sustainability and Pollution Prevention (also EID 447)

Biomedical Engineering
Bio 201/Biology for Engineers I
Bio 202/Biology for Engineers II
Ch 340/Biochemistry
Ch 440/Biochemistry II
ChE 475/Pharmaceutical Engineering
ECE 444/Bio-instrumentation
EID 221/Biotransport Phenomena
EID 222/Biomaterials
EID 223/Injury Biomechanics and Safety Design
EID 224/Biomechanics
EID 320/Special Topics in Bioengineering I
EID 321/Special Topics in Bioengineering II
EID 322/Special Topics in Bioengineering III
EID 323/Special Topics in Bioengineering IV
EID 325/Science and Application of Bioengineering Technology
EID 327/Tissue Engineering
EID 424/Bioengineering Applications in Sports Medicine

Energy Engineering
ChE 421/Advanced Chemical Reaction Engineering
ChE 430/Thermodynamics of Special Systems (also EID 430 and ME 430)
ChE 434/Special Topics in Combustion (also ME 434)
ME 331/Advanced Thermodynamics
ME 326/Energetics (also EID 225)
ME 431/Internal Combustion Engines
ME 432/Introduction to Nuclear Power Plant Technology
Masters Program—Chemical Engineering

The Department of Chemical Engineering offers a thesis option in pursuing the Master of Engineering-Chemical Engineering degree. It does not offer a non-thesis option at this time.

In the thesis M.E. degree graduate students in chemical engineering must complete a minimum of 30 credits beyond their baccalaureate degree. Of those 30 credits 9 credits must come from the following courses:

ChE 421 Advanced Chemical Reaction Engineering

ChE 430 Thermodynamics of Special Systems or ChE 431 Advanced Chemical Engineering Thermodynamics and Molecular Theory

ChE 441 Advanced Heat and Mass Transfer (also EID 441)

Of the remaining 21 credits, 3 credits must be from Chemical Engineering graduate courses, 12 credits may be from graduate engineering or science electives, and 6 credits from a thesis project on an approved topic.

A thesis candidate must choose a full-time Cooper Union faculty member from either the chemistry or chemical engineering department as one of his or her thesis advisers. Before choosing a thesis topic, however, the student should explore various professors’ research interests. Research interests of chemical engineering faculty members include non-Newtonian flow, crystal growth from high-temperature melts, polymer extrusion, heat and mass transfer with change of phase, drag coefficients in dense phase transport, construction of a database of engineering materials, mathematical modeling of bio-heat transfer in microcirculation, mathematical modeling of whole-body heat integrated gasification processes for the simultaneous disposal of sludge and garbage with concomitant production of steam and electricity, biochemical separation, protein purification, environmental engineering and mathematical modeling, evaluation of sustainability, batch process design and optimization, pollution prevention and mitigation, infinite linear programming, particle technology, multiphase flow and fluidization, pharmaceutical engineering and processes, nanomaterials and energy systems and processes.
CIVIL ENGINEERING

Mission Statement
To prepare our students as civil engineering professionals who will have the depth and breadth of knowledge, sense of social and ethical responsibility, commitment to a safe and sustainable environment, and a desire to serve society in leadership positions.

Program Educational Objectives

• Our civil engineering graduates are engaged in life-long learning to stay abreast of the latest body of knowledge and professional practices in civil engineering and allied disciplines throughout their careers.

• Our graduates are excelling in teamwork, interdisciplinary concepts, organizational skills, and problem-solving methodologies in their professional careers.

• Our graduates have attained positions of leadership as professional practitioners, government officials, academicians, inventors, researchers, etc., during their professional careers.

• Our graduates are committed to excellence, independent thinking, innovation, and modern professional practices throughout their careers.

• Our graduates are committed to professional and ethical responsibility during their careers.

• Our graduates who pursue careers in engineering have successfully achieved professional licensure in their chosen field.

Student Outcomes
The Civil Engineering Department has established the following set of outcomes that our undergraduate students are expected to achieve by the time of graduation:

• An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

• An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

• An ability to communicate effectively with a range of audiences
• An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

• An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

• An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

• An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Description

Civil engineering, earliest of the engineering professions, has evolved into a broad spectrum of specialties: structural, geotechnical, hydraulic, environmental, transportation, urban planning, construction management, sustainable design, urban security, and infrastructure rehabilitation. Depending on his or her interests and abilities, the modern civil engineer may also become involved in research, design, and development related to projects in alternative energy sources, space structures, protection against natural and man-made disasters, etc. The civil engineer also studies and develops new materials, new structural systems, and new strategies for optimizing design. Basic research, especially in the areas of applied and experimental mechanics, often arises either as a preliminary or adjunct requisite to these studies.

The civil engineer who wishes to practice creatively in any of these fields must be thoroughly grounded in the basic sciences, mathematics and applied mechanics, structures and structural mechanics, engineering sciences and computer applications. Members of the civil engineering faculty are actively engaged in research in their specialties, which include modern advances in structural engineering and materials, geotechnical engineering, alternative energy sources, green design of buildings, water pollution control technologies, water resources engineering, and urban security.

Within the civil engineering program, students may elect to pursue specialized study through an appropriate choice of electives in two areas:

• Structural and Geotechnical Engineering

• Water Resources and Environmental Engineering
Graduate level courses in these areas are available to seniors with superior academic records as indicated in the following lists:

Structures and Geotechnical Engineering: CE 422, CE 425, CE 426, CE 427, CE 431, CE 432, CE 433, CE 434, CE 435, CE 436, CE 438, CE 450, CE 470, CE 471, CE 481, CE 482, CE 483, CE 484

Water Resources and Environmental Engineering: CE 437, CE 414, CE 440, CE 441, CE 442, CE 444, CE 446, CE 447, CE 448, CE 449, CE 485, CE 486, CE 487

The civil engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

2022-23 Civil Engineering Enrollment and Graduation
Freshman: 38
Sophomore: 31
Junior: 23
Senior: 14
Total: 106

In May 2020 the Department of Civil Engineering graduated 27 students with a Bachelor of Engineering in Civil Engineering degree.

Graduate Program

Completion of the master of engineering degree program in civil engineering is important for entry into the profession in any of the specialized areas discussed above. The civil engineering department offers many graduate level courses in the cited areas, such as structural, geotechnical, hydraulic and environmental engineering.
Civil Engineering Curriculum

The below tables affect incoming students beginning in the Fall 2020 semester.

Freshman Year Credits

<table>
<thead>
<tr>
<th>Fall Semester:</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>EID 102 Engineering Graphics</td>
<td>1</td>
</tr>
<tr>
<td>CS 102 Computer Programming for Engineers</td>
<td>2</td>
</tr>
<tr>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester:</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>CE 151 Urban Transportation Planning</td>
<td>3</td>
</tr>
<tr>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>Total credits spring semester</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Sophomore Year Credits

<table>
<thead>
<tr>
<th>Fall Semester:</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>ESC 200 Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 210 Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Total credits fall semester</td>
<td>18.5</td>
</tr>
</tbody>
</table>
Spring Semester:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC000.4 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>BIO 250 Biotechnology in Environmental Systems</td>
<td>3</td>
</tr>
<tr>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 214 Physics III: Optics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 201 Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 220 Fundamentals of Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credits spring semester: 18

Junior Year Credits

Fall Semester:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 321 Structural Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>CE 344 Environmental Systems Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>ESC 330 Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ESC 340 Fluid Mechanics and Flow Systems</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credits fall semester: 18

Spring Semester:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 322 Structural Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>CE 331 Introduction to Geotechnical Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>CE 343 Water Resources Engineering</td>
<td>4.5</td>
</tr>
<tr>
<td>CE 341 Design of Steel Structures</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Sciences Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credits spring semester: 18

Senior Year Credits

Fall Semester:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 342 Design of Reinforced Concrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CE 363 Civil Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>CE 332 Introduction to Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 346 Hydraulic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credits fall semester: 15

Spring Semester:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 361 Civil Engineering Experimental Projects</td>
<td>2</td>
</tr>
<tr>
<td>CE 364 Civil Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>CE 348 Environmental and Sanitary Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Engineering or Science Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total credits spring semester: 14

Total credits required for degree: 135
Masters Program—Civil Engineering

The Department of Civil Engineering offers both the thesis and non-thesis option in pursuing a Master of Engineering-Civil Engineering degree. If the thesis option is chosen, the student is required to take 24 credits of course work and six credits of thesis. If the non-thesis option is chosen, the student is required to take 30 credits of course work and submit a report from one of the courses.

Completion of the Master of Engineering degree program in civil engineering is important for entry into the profession. The civil engineering department offers the master's degree in two specialized areas: structural and geotechnical; water resources and environmental engineering.

The student must complete a coherent concentration of graduate-level courses approved by the department.

Thesis Project (6 credits)

Total Credits: 30

Graduate students in the department of civil engineering become equipped with the theoretical and practical knowledge needed to solve many problems facing both our built and natural environments. Coursework grounded in the principles of mathematics, structural mechanics, fluid mechanics, soil mechanics, environmental sciences, and computer applications prepares students for careers in structural engineering, construction management, infrastructure rehabilitation, geotechnical engineering, water resources and environmental engineering.

Employers of our graduates include: Thornton Tomasetti, Arup, Mueser Rutledge, Metropolitan Transportation Authority, Skanska, Gilbane, Port Authority of New York & New Jersey, NYC Department of Design and Construction.
ELECTRICAL ENGINEERING

Electrical Engineering comprises the physical systems, devices and processes that form the backbone for the Information Age, including: electronic devices and materials, integrated circuits, signal analysis and processing for communication and multimedia applications, computer architectures and processes, embedded and distributed systems and networks, machine learning, and biomedical engineering.

The Cooper Union offers both a Bachelor of Engineering and a Master of Engineering in Electrical Engineering. The Bachelor of Engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Electrical engineering alumni from The Cooper Union have been very successful as professionals and leaders for the new economy emerging in the Information Age. Many pursue careers in other areas such as business and finance, law, medicine, applied mathematics and science.

The dedicated faculty and high faculty to student ratio ensure that students aren’t just names on a list, but get to know the faculty as soon as they step into Cooper Union.

Mission Statement
To develop a highly trained, consummate engineer: able to lead, to practice in a professional manner, to grow with technological advances, to express himself or herself in written and in oral form, to function as a project engineer immediately upon graduation and to pursue graduate studies in a variety of professional fields.

Program Educational Objectives
• Our graduates will have positions where they function as first-class project engineers.
• Our graduates will have positions that require exceptional technical knowledge and professional design skills.
• Our graduates will engage in activities that involve professional-level written and oral expression.
• Our graduates will engage in activities that require demonstrating leadership skills.
• Our graduates will engage in activities that demonstrate a commitment to lifelong learning, research, independent thinking and innovation.
Student Outcomes

• An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

• An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

• An ability to communicate effectively with a range of audiences

• An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

• An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

• An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

• An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

2022-2023 Electrical Engineering Enrollment and Graduation

Freshman: 29
Sophomore: 29
Junior: 31
Senior: 34
Total: 123

In May 2020, the Department of Electrical Engineering graduated 36 students with a Bachelor of Engineering in Electrical Engineering degree.

Advisement

Undergraduate All first year undergraduates are advised by Associate Dean Ruben Savisky. First year EE students are encouraged to discuss their studies and future plans with any full-time EE faculty.

After the first year, EE students select an advisor from among the full-time EE faculty. The selected advisor may change from one semester to another, but during any single registration cycle, only one faculty member should be approached to approve the set of courses.
The exception to this rule is that all EE students on academic probation are advised by Prof. Neveen Shlayan, the EE representative to the Committee on Academic Standards of the school of engineering.

All EE students are required to join an email google group in order to receive important information from the department faculty. Only EE students and full-time EE faculty are members of this group, and only faculty may post to this group. Contact the department chair, Prof. Fred L. Fontaine for instructions on joining these groups.

Graduate Every Master student is advised by a full-time EE faculty member. This advisor is responsible for approving the set of courses used to fulfill the requirements for the master degree.

For students following the thesis option, this advisor is also the thesis advisor. If a student has not yet selected a thesis advisor, they should identify an interim EE faculty advisor, who would approve courses for registration purposes.

Subject to the approval of the EE department chair and the full-time EE thesis advisor, a student may identify a second person who is not a full-time EE faculty member to serve as a thesis co-advisor.

Electrical Engineering Curriculum

Signal Processing and Electronics Track

Freshman Year Credits

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>EID 102 Engineering Design Graphics</td>
<td>1</td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>HSS 1 Literary Forms and Expressions</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>16</td>
</tr>
</tbody>
</table>
Spring Semester:
- ESC 000.1 Professional Development Seminar 0
- Ch 111 General Chemistry Laboratory 1.5
- ECE 150 Digital Logic Design 3
- ECE 160 Programming for Electrical Engineers 3
- Ma 113 Calculus II 4
- Ph 112 Physics I (Mechanics) 4
- HSS 2 Texts and Contexts: Old Worlds and New 3

Total Credits Spring Semester 18.5

Sophomore Year Credits

Fall Semester:
- ESC 000.1 Professional Development Seminar 0
- ECE 240 Circuit Analysis 3
- ECE 291 EE Sophomore Projects 1
- Ma 223 Vector Calculus 2
- Ma 240 Ordinary & Partial Differential Equations 3
- Ph 213 Physics II: Electromagnetic Phenomena 4
- Ph 291 Introductory Physics Laboratory 1.5
- HSS 3 The Making of Modern Society 3

Total Credits Fall Semester 17.5

Spring Semester:
- ESC 000.1 Professional Development Seminar 0
- ECE 210 MATLAB Seminar: Signals and Systems 0
- ECE 211 Signal Processing & Systems Analysis 3
- ECE 241 Electronics I 3
- ECE 251 Computer Architecture 3
- Ma 224 Probability 2
- Ph 214 Physics III: Modern Physics 3
- HSS 4 The Modern Context: Figures and Topics 3

Total Credits Spring Semester 17

Junior Year Credits

Fall Semester:
- ECE 300 Communication Theory 3
- ECE 310 Digital Signal Processing 3
- ECE 311 Hardware Design 3
- ECE 342 Electronics II 4
- ECE 393 Electrical Engineering Junior Projects I 2
- Ma 326 Linear Algebra 3

Total Credits Fall Semester 18
Spring Semester:
 ECE 302 Probability Models & Stochastic Processes 3
 ECE 303 Communication Networks 3
 ECE 335 Engineering Electromagnetics 4
 ECE 345 Integrated Circuit Engineering 3
 ECE 394 Electrical Engineering Junior Projects II 3
 Humanities / Social Sciences Elective 3
Total Credits Spring Semester 19

Senior Year Credits

Fall Semester:
 ECE 395 Electrical Engineering Senior Projects I 3
 Engineering or Science electives 6
 Humanities / Social Sciences Elective 3
 Non-technical elective 3
Total Credits Fall Semester 15

Spring Semester:
 ECE 396 Electrical Engineering Senior Projects II 3
 Engineering or Science electives 8
 Non-technical elective 3
Total Credits Spring Semester 14

Total credits required for Bachelor’s degree 135

Computer Engineering Track

Freshman Year Credits

Fall Semester:
 ESC 000.1 Professional Development Seminar 0
 Ch 110 General Chemistry 3
 EID 101 Engineering Design and Problem Solving 3
 EID 102 Engineering Design Graphics 1
 Ma 110 Introduction to Linear Algebra 2
 Ma 111 Calculus I 4
 HSS 1 Literary Forms and Expressions 3
Total Credits Fall Semester 16
Spring Semester:
ESC 000.1 Professional Development Seminar 0
Ch 111 General Chemistry Laboratory 1.5
ECE 150 Digital Logic Design 3
ECE 160 Programming for Electrical Engineers 3
Ma 113 Calculus II 4
Ph 112 Physics I (Mechanics) 4
HSS 2 Texts and Contexts 3
Total Credits Spring Semester 18.5

Sophomore Year Credits

Fall Semester:
ESC 000.1 Professional Development Seminar 0
ECE 240 Circuit Analysis 3
ECE 291 EE Sophomore Projects 1
Ma 223 Vector Calculus 2
Ma 240 Ordinary & Partial Differential Equations 3
Ph 213 Physics II: Electromagnetic Phenomena 4
Ph 291 Introductory Physics Laboratory 1.5
HSS 3 The Making of Modern Society 3
Total Credits Fall Semester 17.5

Spring Semester:
ESC 000.1 Professional Development Seminar 0
ECE 210 MATLAB Seminar: Signals and Systems 0
ECE 211 Signal Processing & Systems Analysis 3
ECE 241 Electronics I 3
ECE 251 Computer Architecture 3
ECE 264 Data Structures & Algorithms I 2
Ma 224 Probability 2
Ph 214 Physics III: Modern Physics 3
HSS 4 The Modern Context: Figures and Topics 3
Total Credits Spring Semester 19

Junior Year Credits

Fall Semester:
ECE 300 Communication Theory 3
ECE 310 Digital Signal Processing 3
ECE 342 Electronics II 4
ECE 357 Operating Systems 3
ECE 365 Data Structures & Algorithms II 2
ECE 393 Electrical Engineering Junior Projects I 2
Total Credits Fall Semester 17
Spring Semester:
- ECE 302 Probability Models & Stochastic Processes 3
- ECE 303 Communication Networks 3
- ECE 366 Software Engineering & Large Systems Design 3
- ECE 394 Electrical Engineering Junior Projects II 3
- Ma 352 Discrete Mathematics 3
- Humanities / Social Sciences Elective 3
Total Credits Spring Semester 18

Senior Year Credits

Fall Semester:
- ECE 395 Electrical Engineering Senior Projects I 3
- Engineering or Science Electives 6
- Humanities / Social Sciences Elective 3
- Non-technical elective 3
Total Credits Fall Semester 15

Spring Semester:
- ECE 396 Electrical Engineering Senior Projects II 3
- Engineering or Science Electives 8
- Non-technical elective 3
Total Credits Spring Semester 14

Total credits required for Bachelor’s degree 135

Masters Program—Electrical Engineering

The Department of Electrical Engineering offers a Master of Engineering in Electrical Engineering. Students have the option of doing a thesis, or pursuing a non-thesis option.

The thesis track requires 24 credits of approved graduate level coursework (400-level classes), plus 6 credits of thesis (ECE499). The non-thesis track requires 30 credits of approved graduate level coursework (400-level classes), plus an identified special project (as described below).

The Master of Engineering program in Electrical Engineering challenges students to pursue one or more areas of specialization in depth, combining rigorous theory and enhancement of analytical skills together with a significant project experience. An essential aspect of the program is the close working relationship between the student and faculty advisor.
Possible areas of concentration or thesis research topics are numerous and reflect the diverse interests of the faculty. Some examples are: digital signal processing (including speech, audio, image, video and biomedical signals); wireless communications and networks; big data, machine learning, natural language processing, and artificial intelligence; reconfigurable and distributed computing; autonomous systems and smart cities; and cross-disciplinary applications (e.g., sustainable engineering, connections with art and architecture).

Students are admitted into the thesis or non-thesis option, that is, this choice must be specified as part of the application to the program. Once admitted, students in the non-thesis option may petition the department to transfer into the thesis track. However, students following the thesis option may not switch to the non-thesis option.

Thesis Option: The candidate must choose a full-time Cooper Union faculty member from the electrical engineering department as one of his or her thesis advisors. In addition to supervising the thesis, that advisor, in consultation with the other faculty in the department, approves the set of courses used to fulfill the requirements for the Master’s degree. There may also be a co-advisor for the thesis, approved by the principal thesis advisor and the electrical engineering department chair. Any co-advisor who is not a member of the full-time faculty of the school of engineering must also be approved by the Dean of Engineering.

Non-Thesis Option: The candidate must choose a full-time Cooper Union faculty member from the electrical engineering department as the faculty advisor. The faculty advisor, in consultation with other faculty in the department, approves the set of courses used to fulfill the requirements for the Master’s degree. As part of the requirements for the degree, the student must work on a substantial project in at least one of the classes taken. Most graduate level courses involve project work, and the student in conjunction with the faculty advisor will ensure that at least one of the course projects will satisfy the requirement. The grade for the selected project must be at least a B, taken from a course with grade of at least a B. Documentation for the project, approved by the advisor, will be provided to the Engineering Dean’s Office to verify that the candidate for the degree has completed this requirement.

General Requirements: As noted above, the advisor approves the set of courses used to fulfill the requirements for the master degree, subject to the following constraints. For each course, the course grade must be at least a C, and the overall GPA for the credits used to fulfill the master of engineering degree must be at least 3.00. A limited set of non-ECE courses may be permitted, but the overall course plan should indicate a strong concentration in some area within the broad discipline of electrical engineering.
Undergraduate students at The Cooper Union are permitted to take graduate level courses as long as prerequisite requirements are met. Those who take additional courses at the graduate level beyond those required for the Bachelor of Engineering degree, who then enter the Master of Engineering program, may apply those additional credits towards the requirements for the Master degree, subject to the approval of the advisor.

Students entering the Master of Engineering program in electrical engineering are expected to have a bachelor’s degree in electrical engineering or a related field from an accredited institution. The exception is that Cooper Union undergraduates or alumni with an engineering degree in a major other than electrical engineering, including the Bachelor of Science of Engineering degree, would be considered for admission into the Master of Engineering program in electrical engineering if they have a demonstrated preparation for advanced studies in the field.

Undergraduate Program

Basic engineering courses along with core math, science and humanities courses are taken in the first and second years. Students are strongly encouraged to meet with a departmental faculty advisor as early as possible, preferably in the first year.

The foundation of electrical engineering in the curriculum is based on these three courses:

Gateway Courses: (9 credits)
- ECE150 (F/S) Digital Logic Design 3 credits
- ECE240 (F) Circuit Analysis 3 credits
- ECE211 (S) Signal Processing & Systems Analysis 3 credits

In particular, students take ECE150 Digital Logic Design in their first year. It provides an introduction not only to the subject matter but also an early laboratory and design experience. Also, EE students take a C based programming course (ECE160) in their first year. Both ECE150 and ECE160 run in the fall and spring semesters.

From the second through the fourth year, students take a sequence of projects courses totaling 12 credits. Students following either track take these projects courses together, in order to foster interaction and multi-disciplinary work. The Electrical Engineering curriculum does not contain standard laboratory courses - these are project courses. That is, students do not perform prepackaged, rote experiments, but instead develop innovative designs, solve open-ended problems, and investigate topics not covered in required courses. The EE senior design courses are open only to students majoring in Electrical Engineering. Students in other majors may work with electrical engineering students on interdisciplinary projects, but they register for the capstone design project courses in their major, or EID362/363 Interdisciplinary Projects.
Sophomore, Junior & Senior Projects Courses: (12 credits)
ECE291 (F) Electrical Engineering Sophomore Projects 1 credit.
ECE393 (F) Electrical Engineering Junior Projects I 2 credits.
ECE394 (S) Electrical Engineering Junior Projects II 3 credits
ECE395 (F) Electrical Engineering Senior Projects I 3 credits
ECE396 (S) Electrical Engineering Senior Projects II 3 credits

In addition to the courses listed above, the following courses are taken by all students, regardless of the chosen track. These courses (with the exception of the general studies electives noted below) should be completed during the first two years of study:

Basic Math, Science & Engineering Courses: (33.5 credits)
MA110 (F) Introduction to Linear Algebra 2 credits
MA111 (F) Calculus I 4 credits
MA113 (S) Calculus II 4 credits
MA223 (F/S) Vector Calculus 2 credits
MA224 (F/S) Probability 2 credits
MA240 (F/S) Ordinary & Partial Differential Equations 3 credits
CH110 (F) General Chemistry 3 credits
CH111 (S) Chemistry Laboratory 1.5 credits
PH112 (S) Physics I (Mechanics) 4 credits
PH213 (F) Physics II (Electromagnetic Phenomena) 4 credits
PH214 (S) Physics III (Optics & Modern Physics) 3 credits
PH291 (F) Introductory Physics Laboratory 1.5 credits
EID101 (F) Engineering Design & Problem Solving 3 credits
EID102 (F) Engineering Graphics 1 credit

General studies: (24 credits)
HSS1, HSS2, HSS3, HSS4 Core Humanities & Social Sciences 12 credits
Electives in Humanities and Social Sciences 6 credits
Non-technical electives: 6 credits

Courses that qualify as non-technical electives include those with HSS/HTA (humanities, social sciences, history of art) designations, as well as courses offered by the schools of art and architecture, selected courses offered by the engineering school that are generally of a non-technical nature (e.g., business, law), and advanced foreign language courses. The EE Department regularly maintains and updates a list of courses that can be used to satisfy the non-technical elective requirements; students must obtain approval from their advisor. Specific information about these courses, including necessary prerequisites, can be obtained from the schools or faculty offering the courses.
MECHANICAL ENGINEERING

Mission Statement
The Cooper Union’s Department of Mechanical Engineering will produce broadly- and rigorously-educated graduates, able to practice professionally, pursue advanced studies and innovate in a wide range of fields. Together with our faculty and staff, our students will develop a commitment toward lifelong interdisciplinary learning, fulfill their potential for responsible leadership and inspire others to continuously pursue excellence by example.

Program Educational Objectives
Within a few years of graduation, our graduates will:

- Apply their broad and rigorous education to responsible, interdisciplinary problem solving.
- Embrace leadership or collaborative roles in innovative undertakings that take on technological, sustainability, economic, or societal challenges.
- Take the initiative to expand their abilities through self-study, professional development, or the pursuit of graduate or professional degrees.

Student Outcomes
- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- An ability to communicate effectively with a range of audiences
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
• An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

• An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

2022-23 Mechanical Engineering Enrollment and Graduation
Freshman: 37
Sophomore: 25
Junior: 28
Senior: 28
Total: 118

In May 2020 the Department of Mechanical Engineering graduated 28 students with a Bachelors of Engineering in Mechanical Engineering degree.

Program Description
Creativity, problem-solving, and design are all at the heart of Mechanical Engineering, the broadest of the engineering disciplines. Cooper students build a strong foundation and have the flexibility to study an expansive range of theoretical and technological interests, including mechanics and materials, thermo-fluid sciences, combustion, vibrations and acoustics, dynamics and control systems, robotics, design, digital fabrication, CAD/CAM and manufacturing. From building the world-largest Rubik’s-style cube to working with doctors to design next generation surgical instruments, Cooper mechanical engineering students create what seems impossible and use acquired knowledge and skills to improve the world. Our students learn by doing, using our campus as an energy efficiency testbed, designing novel musical instruments, creating overdose-reversing wearable drug delivery devices, building a Formula-style racecar from scratch, and designing drones to help firefighters. Our Mechanical Engineers are valued for their analytical and problem-solving abilities and go on to prestigious graduate programs and careers in aerospace, automotive, ocean and marine engineering, biomedical engineering, energy, finance, law and medicine.

Undergraduate Program
The sequences of courses shown in the undergraduate curriculum table emphasize the fundamental engineering sciences as well as their applications in the analysis and solution of contemporary engineering problems. By the selection of electives and of their design and research projects, students have a large degree of flexibility in exploring their own interests.
Graduate Program
Areas of research include computer-aided design/engineering/manufacturing, robotics, biomedical engineering, automotive systems, modern control systems, mechatronics, sustainable building systems, thermoelectric power generation, vibrations and acoustics, combustion and other interdisciplinary areas of engineering.

Mechanical Engineering Curriculum

Freshman Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>18</td>
<td>ESC 000.1 Professional Development Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma 110 Introduction to Linear Algebra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma 111 Calculus I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 110 General Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EID 101 Engineering Design and Problem Solving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EID 102 Engineering Graphics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS 102 Computer Programming for Engineers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSS 1 Literary Forms and Expressions</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Total Credits Fall Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Semester</td>
<td>18.5</td>
<td>ESC 000.2 Professional Development Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma 113 Calculus II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph 112 Physics I: Mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EID 103 Principles of Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch 111 General Chemistry Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ME 102 Statics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>Total Credits Spring Semester</td>
</tr>
</tbody>
</table>

Sophomore Year Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>19.5</td>
<td>ESC 000.3 Professional Development Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma 223 Vector Calculus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma 240 Ordinary and Partial Differential Equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph 291 Introductory Physics Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ME 200 Dynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESC 210 Materials Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSS 3 The Making of Modern Society</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>Total Credits Fall Semester</td>
</tr>
</tbody>
</table>
Spring Semester:
- ESC 000.4 Professional Development Seminar 0
- Ph 214 Physics III: Optics and Modern Physics 3
- ESC 221 Basic Principles of Electrical Engineering 2
- ESC 201 Mechanics of Materials 3
- ESC 330 Engineering Thermodynamics 3
- ME 211 Design and Prototyping 2
- ESC 251 Systems Engineering 3
- HSS 4 The Modern Context: Figures and Topics 3

Total Credits Spring Semester 19

Junior Year Credits

Fall Semester:
- Ma 224 Probability 2
- ESC 340 Fluid Mechanics & Flow Systems 3
- ME 300 Stress and Applied Elasticity 3
- ME 351 Feedback Control Systems 3
- ME 352 Process Control Laboratory 1
- Engineering or Science Elective 3
- Humanities/Social Sciences Elective 3

Total Credits Fall Semester 18

Spring Semester:
- ME 301 Mechanical Vibrations 3
- ME 342 Heat Transfer 3
- ME 360 Engineering Experimentation 3
- Engineering or Science Elective 3
- Humanities/Social Sciences Elective 3

Total Credits Spring Semester 15

Senior Year Credits

Fall Semester:
- ME 312 Manufacturing Engineering 3
- ME 331 Advanced Thermodynamics 3
- ME 393 Mechanical Engineering Projects 3
- ME 300- or 400-level Lecture Course* 3
- Free Elective 3

Total Credits Fall Semester 15

Spring Semester:
- ME 394 Capstone Senior Mechanical Engineering Design 3
- ME 300- or 400-level Lecture Course* 3
- Free Electives 6

Total Credits Spring Semester 12

Total credits required for degree 135

*Please note independent studies cannot be used to fulfill this requirement.
Masters Program—Mechanical Engineering

The Department of Mechanical Engineering offers both the thesis and non-thesis option in pursuing a Master of Engineering degree. If the thesis option is chosen, the student is required to take 24 credits of course work and six credits of ME499 for their thesis project work. If the non-thesis option is chosen the student is required to take 30 credits of course work and submit a report that fulfills the special project requirement. The student must complete a coherent concentration of graduate-level courses approved by the department.

Thesis requirements and non-thesis requirements are outlined in the master’s degree requirements. Pursuing the thesis option gives students the opportunity to work under the guidance of a faculty adviser on research or an original investigation of a problem in mechanical engineering. Writing and defending a thesis describing the results of their work prepares student for further doctoral study and research and project work in industry. For some students, such as those working while completing their degree requirements, the non-thesis option is preferred.

Through course projects, research, and consulting opportunities, graduate students in the Department of Mechanical Engineering explore design and innovation, robotics, mechatronics, energy and sustainability, nanotechnology, dynamic systems and control, vibration and acoustics, biomedical engineering and cutting-edge computational methods. Courses balance analytical rigor and creative design, thereby preparing graduates for a variety of careers.

Graduates are valued for their strong project-based design skills and analytical abilities. They have successful careers as entrepreneurs and innovators in the aerospace, automotive, biomedical, energy and construction industries. They often pursue doctoral studies in a range of mechanical engineering fields.

SPECIALIZATION AND RESEARCH AREAS: computer-aided design and engineering, computational fluid dynamics, combustion, refrigeration, robotics, biomedical systems, respiratory biomechanics, automotive systems, mechatronics, thermoelectric power generation, energy-efficient buildings, vibration and acoustics

EMPLOYERS OF OUR GRADUATES: Arup, Boeing, Bloomberg LP, Consolidated Edison, Credit Suisse, Exxon, General Dynamics, General Motors, Google, Honda, IBM, Merck, NASA, Raytheon, Southwest Research Institute, SpaceX, Stryker, United States Patent and Trademark Office

To apply see application information and master’s degree requirements for further details.
GENERAL ENGINEERING

The School of Engineering offers a program in General Engineering leading to the degree of Bachelor of Science (B.S.). This program is designed for students with a clear idea of their educational objectives which require a more flexible, interdisciplinary course of study.

This program is suitable for students who desire a strong, broad-based, rigorous engineering background as preparation for fields such as: chemistry, mathematics, medicine, biomedical engineering, law, finance, or entrepreneurship. Each B.S. student is advised from the Dean’s Office, however, students are encouraged to identify academic advisor[s] in other departments who can specifically help them with issues associated with the areas they have chosen as their focus.

Students are required to enroll in 55 core curriculum credits in mathematics, the sciences, and the humanities (similar to the B.E. degree) in their freshman and sophomore years as they prepare to select courses open to all Engineering students. Art, Architecture, and Humanities courses may also be selected as seats in those courses become available and the respective schools/faculty grant permission.

The B.S. program is not suitable for students who wish professional licensure.

Student Outcomes

The General Engineering Department has established the following set of outcomes that our undergraduate students are expected to achieve by the time of graduation:

• An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

• An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

• An ability to communicate effectively with a range of audiences

• An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

• An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
• An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

• An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

General Engineering Curriculum

The Bachelor of Science (B.S.) degree is intended for students who have a clear idea of their educational objectives in which a more flexible and interdisciplinary course of study would be more appropriate.

In the first two years, a student must complete a minimum of 55 credits in core engineering, engineering sciences (ESC) and interdisciplinary engineering (EID) courses, thereby building a strong analytical background, in addition to fulfilling all the requirements for the bachelor’s degree as summarized here:

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses (freshman and sophomore)</td>
<td>55</td>
</tr>
<tr>
<td>Humanities and Social Sciences (over and above the core courses)</td>
<td>6 minimum</td>
</tr>
<tr>
<td>Engineering and Engineering Sciences (over and above the core courses)</td>
<td>44 minimum</td>
</tr>
<tr>
<td>Free Electives</td>
<td>30</td>
</tr>
<tr>
<td>Total credits</td>
<td>135</td>
</tr>
</tbody>
</table>

For junior and senior year, students are advised to identify one or more areas in which they would like to focus their plan of study and to find an academic advisor(s) in those fields for specific guidance. Students may choose from all courses available at The Cooper Union and may work in such interdisciplinary areas as environmental and energy resources engineering, systems and computer engineering, bioengineering and ocean and aerospace engineering.
Students who are considering applications to other professional schools after completing the engineering degree are advised to take one year of organic chemistry and one year of biology for medicine and dentistry, additional courses in the social sciences for law, and one year of economics for business or finance. Such students should consult their faculty advisors in order to design a program to meet professional goals and degree requirements.

Freshman Year Credits

Fall Semester:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 000.1 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 110 Introduction to Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Ma 111 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Ch 110 General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>EID 101 Engineering Design and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CS 102 Computer Programming for Engineers</td>
<td>2</td>
</tr>
<tr>
<td>EID 102 Engineering Graphics</td>
<td>1</td>
</tr>
<tr>
<td>HSS 1 Freshman Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring Semester:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 000.2 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 113 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Ch 111 General Chemistry Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>Ch 160 Physical Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Ph 112 Physics I: Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>HSS 2 Texts and Contexts: Old Worlds and New</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Sophomore Year Credits

Fall Semester:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 000.3 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 223 Vector Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Ma 224 Probability</td>
<td>2</td>
</tr>
<tr>
<td>Ph 213 Physics II: Electromagnetic Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>Ph 291 Introductory Physics Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>HSS 3 The Making of Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Credits Fall Semester</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Spring Semester:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 000.4 Professional Development Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Ma 240 Ordinary and Partial Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Ph 214 Physics III: Optics and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>HSS 4 The Modern Context: Figures and Topics</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>10</td>
</tr>
<tr>
<td>Total Credits Spring Semester</td>
<td>19</td>
</tr>
</tbody>
</table>
CHEMISTRY

The Department of Chemistry offers a wide range of courses that are necessary for the understanding of the various engineering disciplines. All first-year engineering students enroll in General Chemistry (a general quantitative and descriptive overview of chemistry) and General Chemistry Laboratory (chemical preparation and analysis, data recording, report writing and safety). Students majoring in chemical or civil engineering also take Physical Principles of Chemistry (a quantitative treatment of chemical thermodynamics, electrochemistry and kinetic theory) during their first year.

Sophomore and junior level courses required for chemical engineering majors can also be taken as electives by those wishing to further their knowledge in the areas of analytical chemistry, biochemistry, organic chemistry and physical chemistry.

In addition, advanced elective courses in biochemistry, inorganic chemistry, theoretical chemistry and nanoscience are available, and are suitable for students interested in bioengineering, chemistry, materials engineering, nanotechnology, or pre-medical studies. Research at the undergraduate and master’s levels can be conducted under the supervision of the chemistry faculty. Interested students should meet with the department faculty to discuss possible research areas.

The Department operates laboratories in general chemistry, organic chemistry, instrumental analysis, bioorganic chemistry, computational chemistry and nanoscience for instruction and research projects.

MATHEMATICS

The primary responsibility of the Department of Mathematics is the maintenance and delivery of the core mathematics curriculum for the School of Engineering. This consists of a sequence of required courses given in the first two years covering calculus, linear algebra, probability, vector calculus and differential equations. In addition to the core courses, there are a variety of elective mathematics courses, some of which are computer-related. The mathematics curriculum will more than adequately prepare the student for professional work as well as graduate study in engineering and applied mathematics.

The faculty of mathematics strives to develop in the student a firm foundation in, and an appreciation of, the structure and methods of mathematics. Students interested in mathematics research should consult the chair for specific areas of expertise.
Minor in Mathematics
The department of mathematics offers a minor in mathematics. Students seeking a minor in mathematics must complete at least 15 credits of mathematics coursework in addition to the 17 credits required by every engineering department. These additional credits must include Mathematical Analysis I and II (Ma 350, 351), Linear Algebra (Ma 326), Modern Algebra (Ma 347) and an elective course in mathematics at or above the 300 level. An overall G.P.A., at graduation, of at least 3.0 among the mathematics portion (32 credits) of the program is required to obtain a minor in mathematics.

Mathematics Curriculum
The department of mathematics offers a minor in mathematics. Students seeking a minor in mathematics must complete at least 15 credits of mathematics coursework in addition to the 17 credits required by every engineering department. These additional credits must include Advanced Calculus I and II (Ma 350 and Ma 351), Linear Algebra (Ma 326), Modern Algebra (Ma347) and an elective course at or above the 300 level. An overall G.P.A., at graduation, of at least 3.0 among the mathematics portion (32 credits) of the program is required to obtain a minor in mathematics.

PHYSICS
The Department of Physics provides a sequence of introductory courses devised to introduce students in engineering to fundamental physical concepts that underlie all the engineering disciplines. All first-year engineering students enroll in Physics I: Mechanics. All second-year engineering students enroll in Physics II: Electromagnetic Phenomena, Introductory Physics Lab, and Physics III: Optics and Modern Physics. The Physics Department occasionally offers elective courses such as General Relativity, Physics Simulations, and Deterministic Chaos, that have been designed to provide an enhanced understanding of specially selected fields of interest in engineering science.
CHEMICAL ENGINEERING

Undergraduate

ChE 211 **Materials Science for Chemical Engineers**
Understanding relationships among atomic or molecular structures, physical properties and performances of substances. Bonding, crystallinity, metals, alloys and polymers. Mechanical properties of inorganic and composite materials. Selection of materials for process equipment design, its effect on economics. Design concerning effect of corrosion and its prevention. 3 credits. Prerequisites: Ch 110

ChE 221 **Material and Energy Balances**
Introduction to the analysis of chemical process systems, using material and energy conservation equations. Estimation of thermodynamics and thermochemical properties of real fluids for engineering calculations. Numerical methods and their implementation on the digital computer for solution of chemical engineering problems. 3 credits. Prerequisite: Ch 160

ChE 331 **Chemical Engineering Thermodynamics II**
Concept of fugacity in imperfect gases; chemical potential and partial molal properties in mixtures; Gibbs-Duhem Equation; ideal solutions of imperfect gas mixtures; the Lewis and Randall Rule; methods of calculating activity coefficients in non-ideal mixtures; vapor-liquid equilibria; checking thermodynamic consistency of vapor-liquid equilibrium data; equilibrium constant, enthalpy change and Gibbs free energy of formation in chemical reactions. 3 credits. Prerequisites: ChE 232

ChE 341 **Fluid Mechanics and Flow Systems**
Introductory concepts of fluid mechanics and fluid statics. 3 credits. Prerequisites: ChE 221

ChE 351 **Separation Process Principles**
Application of thermodynamic and transport concepts to the design of continuous-contact and staged mass transfer processes common in the chemical process industries. Separation by phase addition, phase creation, by barrier, by solid agent and by external field or gradient. Examination of the limitations of theory and empiricism in design practice. 3 credits. Prerequisites: ChE 331 and ChE 342
ChE 361 Chemical Process Dynamics and Control
Introduction to logic of process dynamics and principles of control in chemical engineering applications; block diagram notation, input disturbance, frequency response and stability criteria for chemical equipment and chemical reaction systems; single- and multiple-loop systems; phase plane analysis of reaction systems; application of analog computer in solution of problems. 3 credits. Prerequisite: ChE 352

ChE 371 Chemical Engineering Laboratory I
This laboratory course emphasizes the application of fundamentals and engineering to processing and unit operations. The experiments range from traditional engineering applications to new technologies and are designed to provide hands-on experiences that complement the theories and principles discussed in the classroom. Preparation of detailed project reports and oral presentations are important components of this course. 2 credits. Prerequisites: ChE 332, ChE 342; Corequisite: ChE 351

ChE 381 Process Evaluation and Design I
The course uses design projects to explore process flow diagrams and initial equipment design estimates based on process and unit operation material and heat balances. Studies include equipment cost estimation methods that are developed into process economic evaluations and profitability analysis. The course concludes with process and equipment design using Simulation Science’s PROvision/PRO-II and an examination of optimization techniques. 3 credits. Prerequisites: ChE 342 and ChE 332

ChE 391 Research Problem I
An elective course available to qualified and interested students recommended by the faculty. Students may select problems of particular interest in some aspect of theoretical or applied chemical engineering. Topics range from highly theoretical to completely practical, and each student is encouraged to do creative work on his or her own with faculty guidance. 3 credits. Prerequisite: senior standing

ChE 392 Research Problem II
Continuation of ChE 391. 3 credits. Prerequisite: ChE 391

ChE 393 Research Problem III
Continuation of ChE 392. 3 credits. Prerequisite: ChE 392
Graduate

ChE 421 Advanced Chemical Reaction Engineering
Principles and practices of chemical reaction systems emphasizing heterogeneous chemical kinetics, coupled heat and mass transfer in reacting systems and reactor dynamics. Modeling and simulation of systems are extensively applied. 3 credits. Prerequisite: ChE 332

ChE 499A/C/D Thesis/Project
Master’s candidates are required to conduct, under the guidance of a faculty adviser, an original investigation of a problem in chemical engineering, individually or in a group, and to submit a written thesis describing the results of the work. 6 credits. This is a full-year course

CIVIL ENGINEERING

Undergraduate

CE 321 Structural Engineering I
Discussion of materials, loads and forms of structures. Analysis of determinate structures. Displacements of structures and their importance in applications. Experimental aspects of materials behavior in structural applications. Emphasis is placed on basic experimental techniques, design of experiments, selection and use of appropriate instrumentation and interpretation of results. 4.5 credits (3 hours of lecture, 3 hours of laboratory). Prerequisite: ESC 201

CE 332 Introduction to Foundation Engineering
Layout of subsurface investigation program, SPT (Standard Penetration Test), Dutch-cone penetrometer. Analysis and design of spread footings on cohesive and cohesion less soil by stability and settlement procedures, combined footings, strap footings, floating foundations and pile foundations. Settlement analysis due to deep-seated consolidation. 3 credits. Prerequisite: CE 331

CE 342 Design of Reinforced Concrete Structures
Study of the behavior and design of structural concrete components and their connections. Understanding and development of design requirements for safety and serviceability, as related to latest specifications by the American Concrete Institute (A.C.I.). Current design, fabrication and construction practices. Introduction to prestressed concrete. 3 credits. Prerequisite: CE 322
CE 344 **Environmental Systems Engineering**
Qualitative and quantitative treatment of water and wastewater systems as related to domestic and industrial needs and their effect on the environment. Introduction to air pollution sources and control and solid/hazardous waste engineering. Design of water and wastewater treatment plants. Field and laboratory techniques for measurement of water quality parameters. Laboratory analysis of representative waters and wastewaters for commonly determined parameters as related to applications in water environment. *This course is the same as EID 344.* 4.5 credits (3 hours of lecture, 3 hours of laboratory). Corequisite: ESC 340; Same as EID 344

CE 346 **Hydraulic Engineering**
Historical background and evolution of current procedures used in the urban transportation planning process. Covered are the historical framework, urban development theories, land use, trip generation, trip distribution models, traffic assignment techniques, modal split and introduction to urban transportation systems. 3 credits. Prerequisite: CE 343

CE 363 **Civil Engineering Design I**
Individual or group design projects based upon the interests of the students and with the approval of the instructor. Final engineering reports and formal oral presentations are required for all projects. Lectures by faculty and professional practitioners cover the following topics: engineering, environmental and economic feasibility assessment issues; preparation of plans and specifications; cost estimates; progress chart and critical path; interfacing with community, etc. Field visits to major New York City projects under construction. 3 credits. Prerequisite: permission of instructor. (Students are required to have taken introductory CE subject(s)) related to project)

CE 369 **Civil Engineering Project**
Individual design, research or experimental projects. Open only to well-qualified students. CE/EID 390Sustainable design minimizes the impact on the environment by site planning and design, energy and water conservation and interior environmental quality. This course will focus on the design of a prototype structure using sun, light, air, renewable materials, geological systems, hydrological systems and greenroofing. Each student will develop a project outlined by the U.S. GreenBuilding Council rating system known as LEED. The six areas that will be developed to design the project are: sustainable sites, water efficiency, energy and atmosphere, material and resources, indoor environmental quality and innovative design process. Class time is separated into a series of lectures, private consultations and student presentations.

3 credits. Prerequisite: permission of instructor
Graduate

CE 414 Solid Waste Management
Engineering aspects of solid waste collection, transport and disposal, including sanitary landfill design, incineration, composting, recovery and re-utilization of resources. Optimization techniques of facility-siting and collection route selection and economic evaluation of factors affecting selection of disposal methods. 3 credits. Prerequisite: permission of instructor

CE 425 Structural Dynamics
Dynamic behavior and design of structures subjected to time-dependent loads. Included in the load systems are earthquakes, blasts, wind and vehicles. Shock spectra and pressure impulse curves. Special applications in blast mitigation design. Same as EID 425. 3 credits. Prerequisite: CE 322

CE 428 Advanced Structural Steel Design

CE 434 Lateral Earth Pressures and Retaining Structures II
Analysis and design of cellular cofferdams, reinforced earth-retaining structures, slurry walls and retaining structures subjected to earthquake loading, soil nailing. 3 credits. Prerequisites: CE 331 and permission of instructor

CE 441 Water and Wastewater Technology
Wastewater sources and estimates of domestic, commercial and industrial flows. Integrated lecture and design periods that cover unit processes for water and wastewater treatment. Design projects include hydraulic and process design of oxidation ponds, screening, grit removal, sedimentation tanks, secondary biological treatment, other physicochemical processes and outfall design. 3 credits. Prerequisite: permission of instructor
CE 449 **Hazardous Waste Management**
Definition and characteristics of hazardous wastes. Generation, transport, treatment, storage and disposal of hazardous wastes. Leachate characteristics and management. Treatment technologies. Monitoring and safety considerations. Obligations under Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Field trips. 3 credits. Prerequisite: permission of instructor.

CE 499A/C **Thesis/Project**
Master’s candidates are required to conduct, under the guidance of a faculty adviser, an original investigation of a problem in civil engineering, individually or in a group, and to submit a written thesis describing the results of the work.

ELECTRICAL AND COMPUTER ENGINEERING

Undergraduate

ECE 150 **Digital Logic Design**
Theoretical and practical issues concerning design with combinational and sequential logic circuits, and programmable logic devices. Number systems, Boolean algebra, representation and simplification of Boolean functions, universal logic families. Finite-state machines, state tables and state diagrams, flip-flops, counters, registers. Adders, decoders, comparators, multiplexers, memories and applications. Programmable devices: PLA, PLD, etc. Principles of analog circuits are presented in the context of real world problems, such as “glitches,” power and ground bounce, contact bounce, tri-state logic and bus interfacing, timing circuits, asynchronous versus synchronous circuit components. Characterization of electronic and logical properties of digital circuits. Course work involves individual and team projects in which: digital circuits are designed and prototypes are constructed and tested on breadboards; designs involving programmable logic devices are developed using CAD tools. The projects, approximately 50 percent of the course grade, are used to assess technical writing, oral presentation, teamwork and project management skills. 3 credits. Open to all students.
ECE 160 Programming for Electrical Engineers
Programming in C in a Linux environment, with an emphasis on software development methodology. Data types, expressions, control flow, pointers, subroutines, numerical and text processing, data structures and algorithms. Introduction to computer architecture and operating systems. Introduction to object oriented programming in C++, and classification of programming languages. 3 credits.

ECE 240 Circuit Analysis
Circuit components, dependent and independent sources, Kirchhoff’s laws, loop and nodal analysis. Superposition, Thevenin and Norton equivalent circuits, and other techniques for circuit simplification. Time-domain analysis of RLC circuits, initial conditions, transient response and steady-state. Phasor analysis, complex power. Ideal op-amps. 3 credits. Prerequisite: Ma 113. Ma 240 is a suggested corequisite

ECE 264 Data Structures & Algorithms I
An introduction to fundamental data structures and algorithms, with an emphasis on practical implementation issues and good programming methodology. Topics include lists, stacks, queues, trees, hash tables and sorting algorithms. Also an introduction to analysis of algorithms with big-O notation. Assignments include programming projects and problem sets. 2 credits. Prerequisite: ECE 150 or ECE 161

ECE 291 Electrical Engineering Sophomore Projects
This course focuses on one particular complex system (e.g., music synthesizer, wireless transceiver, radar) to introduce a wide range of electrical engineering principles such as frequency response, noise, feedback, loading and interfacing. In a laboratory setting, students investigate the design of subsystems that may include amplifiers, oscillators, RF or opto-electronic circuits, A/D and D/A converters, and power circuits. By measuring the impact of the operating conditions on circuit performance, students learn the principles of systems engineering, development of a testbench, and proper documentation. By the end of the semester, the class will have developed a complete functioning system through reverse engineering. 1 credit. Prerequisite or corequisite: ECE150. Corequisite: ECE240

ECE 300 Communication Theory
Information theory: entropy, information, channel capacity, rate distortion functions, theoretical limits to data transmission and compression. Error control coding: block, cyclic and convolutional codes, Viterbi algorithm. Baseband and bandpass signals, signal constellations, noise and channel models. Analog and digital modulation formats (amplitude, phase and frequency), MAP and ML receivers, ISI and equalization. Coherent and noncoherent detection, carrier recovery and synchronization. Performance: computation of SNR, BER, power and bandwidth requirements. TDMA, FDMA, CDMA. 3 credits. Prerequisites: Ma 224 and ECE 211
ECE 310 Digital Signal Processing

ECE 311 Hardware Design
Development methodologies for signal processing hardware systems: RTL, HDL, synthesis and verification. Special processors including FPGA, multicore, ARM and GPU. ADC and DAC, interchip and intrachip communication, mixed-signal systems, clock and power distribution, loading, sensors and actuators, embedded systems. PCB and surface mount devices. Systems engineering. Course work including projects involving hardware realizations, simulation and emulation, and software tools for system design. 3 credits. Prerequisites: ECE 211, ECE 241, ECE 251. For students entering Fall 2016 or later: required for signals/electronics track (3rd yr. fall).

ECE 342 Electronics II

ECE 357 Computer Operating Systems
Theory and implementation of modern computer operating systems. Message based and multiprocessor kernels. Networking and interprocess communication. Security, auditing and authentication. Device drivers, interrupt handling, task switching, virtual memory, memory management, scheduling, synchronization and locking. File systems, resource allocation and management. Real-time, fault-tolerant and high security operating systems. User environment and interface issues. Projects in operating system design and programming, case studies. 3 credits. Prerequisites: ECE 251 and either ECE 160 or ECE 161
ECE 365 Data Structures & Algorithms II
A continuation of ECE 264, also with an emphasis on practical implementation issues and good programming methodology. Topics include graphs, graph-related algorithms and dynamic programming techniques. Also an introduction to some advanced topics such as Turing machines, computability and NP-complete systems. Assignments include programming projects and problem sets. 2 credits. Prerequisite: ECE 264

ECE 393 Junior Electrical Engineering Projects I
An introduction to laboratory techniques for electrical and computer engineering. Electronic test equipment including: DVM, oscilloscope, curve tracer, spectrum analysis. Circuit analysis and design, discrete and integrated electronic components and circuits. Several projects of limited scope provide an understanding of the fundamental building blocks employed in the more advanced designs in successive projects courses. Students give weekly oral presentations and demonstrate laboratory proficiency through in-class demonstrations and concise, formal technical reports. 2 credits. Prerequisites: ECE 211 & ECE 241 & ECE 291. Co-requisite: ECE 342

ECE 395 Senior Electrical Engineering Projects I
Courses ECE 395 and ECE 396 constitute the year-long senior design project. Students work in small groups on projects chosen with the advice and consent of the faculty adviser. Projects may be oriented towards research or product development, and may be in any area of electrical and computer engineering, such as in: computer engineering, signal processing (imaging, sensor arrays, multimedia), telecommunications, computer networks, microwaves, optics, advanced electronics, VLSI chip design, or an interdisciplinary area such as robotics or bioengineering. Students perform all aspects of project management, such as scheduling, budgeting, system design and developing milestones, as well as technical work including hardware and software implementation, testing and performance evaluation. Students also give several spontaneous and rehearsed oral presentations and prepare written reports. Students attend weekly lectures covering: social, economic, legal and ethical issues; safety and laboratory practice; design methodologies; technical writing; preparation of multimedia presentations and tailoring presentations to target audiences. 4 credits. Prerequisite: ECE 394. This course will be 3 credits effective Fall 2019
Graduate

ECE 412 **Speech & Audio Processing**
Selected topics in digital speech and audio processing. Speech analysis, synthesis and recognition. Acoustics and acoustic modeling. Auditory perception. Audio feature extraction including complex cepstrum and LPC coefficients. Hidden Markov models and other speech recognition approaches. Speech and audio coding such as MP3 and CELP. Text to speech. Music synthesis, analysis and retrieval. 3 credits. Prerequisites: Ma 224 and ECE 211. Prerequisite or corequisite: ECE 302

ECE 431 **Microwave Engineering**
Passive circuits, open-boundary waveguides, perturbation theory, coupled modes, waveguide junctions, microstrip. Two- and three-terminal devices; varactor diodes, Gunn diodes; IMPATT and MESFET technology. Design of RF amplifiers and phasishifters. Computer-aided simulation and design. 3 credits. Prerequisite: ECE 335

ECE 447 **Digital VLSI System Design**
This course focuses on the top-down, automated digital system design flow using CMOS logic: RTL design/simulation, timing/power driven circuit synthesis, automated place-and-route, and post-layout simulation with emphasis on test/manufacturability in deep sub-micron technologies. The course culminates with the tape-out of a large design project covering functional specification to sign-off layout. 3 credits. Prerequisites: ECE 251, ECE 342

ECE 464 **Databases**
Engineering and design of databases. Topics to be covered may include: data models, database and scheme design; schema normalization and integrity constraints; query processing and optimization; distributed and parallel databases; SQL and XML. 3 credits. Prerequisite: ECE 264

ECE 469 **Artificial Intelligence**
This course covers many subtopics of AI, focusing on a few important subtopics in detail. The “intelligent agent” approach is explained and forms a foundation for the rest of the course. Intelligent search: uninformed search, depth-first search, breadth-first search, iterative deepening; informed search, best-first search, A*, heuristics, hill climbing; constraint satisfaction problems; intelligent game playing, minimax search, alpha-beta pruning. Machine learning: probability, Bayesian learning; decision trees; statistical machine learning, neural networks, Naive Bayes, k-nearest neighbors, support vector machines. Natural language processing: syntax, semantics and pragmatics; real-world knowledge; parsing; statistical NLP. Philosophy of AI: AI and consciousness, the Turing test, the Chinese room experiment. Coursework includes two large individual programming projects. 3 credits. Prerequisite: ECE 264
ECE 472 *Deep Learning*
Differentiable directed acyclic graphs covering applications in unsupervised learning, as well as generative and discriminative modeling. Gradient-based methods for optimization (stochastic gradient descent, Nesterov momentum, adam). Fast gradient computation for arbitrary computational graphs (automatic differentiation). Exploding and vanishing gradient problems. Convolutional networks. Arbitrary graphs for regression, classification and ranking. Autoencoders, adversarial networks and variations for unsupervised representation learning, generative modeling and other applications. Focus on applications in computer vision, speech processing and research problems in communication theory. 3 credits. Prerequisites: MA223, MA224 and either ECE211, ChE352 or ME251.

ECE 475 *Frequentist Machine Learning*
Statistical inference, exploratory data analysis and data visualization. Linear regression methods such as ridge, LASSO, elastic net. Classification methods such as logistic regression, SVM. Regularization and feature selection methods. Additive models. Classification and regression trees including random forests and extreme gradient boosting. Model selection and cross validation. Clustering methods such as K-nearest neighbors, spectral clustering. Unsupervised learning methods such as market basket analysis and the a-priori method. Non-negative matrix factorization and recommendation systems. 3 credits. Prerequisites: MA 223, MA 224; either ECE 211, ChE 352 or ME 251.

ECE 478 *Financial Signal Processing*
This course approaches financial engineering from a signal processing perspective. Stochastic processes: random walks, Brownian motion, Ito calculus, continuous models including Black- Scholes, discrete models including negative binomial, martingales, stopping times. Representation and analysis of financial concepts such as price, risk, volatility, futures, options, arbitrage, derivatives, portfolios and trading strategies. Analysis of single and multiple nonstationary time series, GARCH models. Optimization methods, big data and machine learning in finance. 3 credits. 3 contact hours per week. Prerequisite: ECE211 or permission of instructor.

ECE 491 *Selected Topics in Electrical & Computer Engineering*
Subjects may include study in electrical and computer engineering, or seminars on topics related to advances in technology. This course may not be used to expand the number of credits of thesis, or cover material related to the thesis. 1-3 credits. Prerequisite: permission of instructor. Open to all students.
ECE 499A/B/C/E Thesis/Project
Master’s candidates are required to conduct, under the guidance of a faculty adviser, an original individual investigation of a problem in electrical and computer engineering and to submit a written thesis describing the results of the work. 6 credits over 1 year

MECHANICAL ENGINEERING

Undergraduate

ME 200 Dynamics
This course introduces the general principles of kinematics (the description of motion) and kinetics (the relationship between motion and the forces that cause it) that are necessary to understand, design, and analyze the motion of engineering systems. Topics include Newton’s laws of motion; two and three dimensional kinematics and kinetics of particles and rigid bodies; relative motion; work and energy relations; impulse and momentum relations; introduction to vibrations. Laboratory modules focus on numerical solutions of equations of motion. 3 credits. Prerequisites: ME 102

ME 300 Stress and Applied Elasticity
Three-dimensional theory of elasticity; state of stress, state of strain, elastic stress-strain relations. Applications include elementary three-dimensional problems, plane stress and plane strain, Saint Venant’s long cylinder, beams and plates. Computer-aided design projects. 3 credits. Prerequisite: ESC 201

ME 310 Design Elements
Application of the principles of mechanics to the design of basic machine elements; study of components subjected to static, impact and fatigue loading; influence of stress concentration; deflection of statically determinate and indeterminate structures by the energy method. Design projects apply basic criteria to the design of shafts, springs, screws and various frictional elements; design projects make use of computer, experimental and modeling techniques. 3 credits. Prerequisite: ME 300

ME 312 Manufacture Engineering
Study of metal processing theory and application with emphasis on casting, machining, and metal deformation processes; plastic forming; special processing techniques; work-holder design principles. Specific are as studied include stages of processing, mathematical modeling of processes, equipment determination, relationship of plant layout, tooling, metrology, and product design to product cost.
Same as EID 312. 3 credits. Prerequisites: ME 342 and ME 211
ME 331 **Advanced Thermodynamics**
Equations of state; properties of pure substances; ideal and real gas and gas vapor mixture properties, fundamental process and cycle analysis of ideal and real systems; modern gas and vapor power cycles and refrigeration cycles. Computer applications to problem solving. 3 credits. Prerequisite: ESC 330

ME 351 **Feedback Control Systems**
Modeling and representation of dynamic physical systems: transfer functions, block diagrams, state equations, and transient response. Principles of feedback control and linear analysis including root locus and frequency response methods. Practical applications and computer simulations using MATLAB. Discussions of ethics will be integrated into the curriculum. 3 credits. Prerequisite: ME 251

ME 352 **Process Control Laboratory**
An introduction to process control using DC motor, liquid-level tank, and heat exchanger experimental rigs. Students will characterize systems, implement on-off control and PID-control, and apply various tuning methods. Practical applications and assignments cover actual heating, ventilation, air conditioning, and building automation systems. 1 credit. Co-requisite: ME351

ME 371 **Data-Driven Problem Solving in Mechanical Engineering**
This course focuses on the implementation of data analysis in mechanical engineering, providing insights, identifying possible problems in engineering systems, and providing solutions to identified problems. The course will discuss how to: 1) visualize and classify information; 2) identify problems in engineering systems using data analysis and machine learning tools; 3) predict characteristics of engineering systems; provide data-driven solutions for engineering problems using data mining; and design products and structures informed by data trends. A broad range of applications within mechanical engineering will be discussed. 3 credits. Prerequisite or co-requisite: ME200

ME 393 **Mechanical Engineering Projects**
Original investigations, involving design and experimental work which allow the application of engineering sciences to the analysis and synthesis of devices or systems and permit the deepening of experience in engineering decision making. Projects are carried out in small groups and are supervised by the instructor in accordance with professional practice. 3 credits. Prerequisite: ME360 or permission of instructor
Graduate

ME 408 Introduction to Computer Aided Engineering (CAE)
Theory and practical applications of computer aided engineering methodologies, and use of multiphysics software, in mechanical engineering practices. Topics include principal modeling and solution techniques, computational geometry applications, modeling of mechanical engineering problems, and non-linear and dynamic problem solving. Students use typical commercial software packages to work on practical case studies. 3 credits. Prerequisite: ESC 201

ME 412 Autonomous Mobile Robots
This course introduces basic concepts, technologies, and limitations of autonomous mobile robots. Topics include digital and analog I/O, tactile sensing, IR sensing and range finding, light sensing, sonar, magnetic field sensing, encoders, DC motor actuators, servo motor actuators, high-level microprocessor control, low-level microprocessor control, power management, and prototyping. Students will form teams to design and build autonomous mobile robots configured to compete with each other in a singles-match game, or to perform a team-oriented task. 3 credits. Prerequisite: ME 353 or ECE 251

ME 415 Introduction to Nanotechnology
Understanding and control of matter at dimensions in the range from one to 100 nanometers for novel applications are the main objectives of nanotechnology. The scope of this course encompasses nanoscale science and engineering. Typical topics will include the unique properties of some nanometer scale materials, processing and fabrication technologies for nanomaterials, imaging, measuring, modeling and manipulating matter at this length scale. In addition, laboratory demonstrations on nanomaterials processing, nanoarchitecturing and self-assembling of nanostructures will be included. 3 credits. Prerequisite: ESC 210 or ESC 211

ME 422 Fundamentals of Aerodynamics
Theory and application of advanced fluid mechanics in aerospace engineering; airplane wing geometry, general governing equations of aerodynamics, potential flow theory, theory of lift for the wing, comparison of theory to wind tunnel experiments, the boundary layer and drag. 3 credits. Prerequisite: ESC 340
ME 432 **Introduction to Nuclear Power Plant Technology**
Nuclear power provides a high potential form of alternative energy, with significant safety constraints. The course centers on the study of a typical US commercial nuclear power plant, its design philosophy, and analysis of nuclear steam supply system and balance of plant systems (including heat exchangers, pumps, relief valves, etc.) for normal operation and steady state and transient accident analysis, and longer-term spent fuel storage. The course utilizes disciplines/methods of thermodynamics, heat transfer, and fluid flow, and plant drawings and data. Analysis includes Three Mile Island Accident, a small break loss-of-coolant accident. When feasible, this course includes a tour of an operating nuclear power plant.
3 credits. Prerequisites: ESC 330 and ESC 340

ME 457 **Drone Control**
This course prepares students to do research in the rapidly evolving field of autonomous navigation, guidance, and control of unmanned air vehicles (UAVs). In particular, students will learn about key concepts from rigid-body dynamics, aerodynamics, feedback control, and state estimation using sensors, to maneuver through obstacles. Traditional homework assignments are replaced with a semester-long simulation software development project in Python. Techniques developed will be applied in the form of student design projects. 3 credits. Course pre/co-requisites: (Prerequisites ECE160 and ECE211) or (Prerequisite ME251 and Pre-/Corequisite ME351)

ME 493 **Selected Advanced Topics in Mechanical Engineering**
Topics in Mechanical Engineering. These courses will deal with current advanced technological developments in various fields of mechanical engineering. Projects and design will be emphasized.
3 credits. Prerequisites: ME faculty permission and graduate standing

ME 499A/C/E **Thesis/Project**
Master’s candidates are required to conduct, under the guidance of a faculty adviser, an original investigation of a problem in mechanical engineering, individually or in a group and to submit a written thesis describing the results of the work. 6 credits for full year
ENGINEERING SCIENCES

Undergraduate

ESC 200 Engineering Mechanics
Equivalent system of forces, distributed forces; forces in structure; friction forces. Particle and rigid body mechanics; kinematics, kinetics. Newton's laws of motion; work and energy; impulse and momentum. 3 credits. Prerequisite: Ph 112

ESC 210 Materials Science
The objective of this course is to promote an understanding of the relationship between the molecular structure of a material and its physical properties. Topics include bonding in atoms and molecules, crystallinity, metals and alloys, polymers, mechanical properties of inorganic materials and composite materials. 3 credits. Prerequisites: none

ESC 330 Engineering Thermodynamics
Rigorous development of the basic principles of classical thermodynamics. Zeroth, first and second laws of thermo-dynamics and their applications to open and closed systems. Analysis of thermodynamic processes, properties of real substances and thermodynamic diagrams. 3 credits. Prerequisites: none

ESC 340 Fluid Mechanics and Flow Systems
Introductory concepts of fluid mechanics and fluid statics. Development and applications of differential forms of basic equations. Dynamics of inviscid and viscous fluids, flow measurement and dimensional analysis with applications in fluid dynamics. Friction loss and friction factor correlation; design of piping systems. 3 credits. Prerequisite: ESC 200 or ME 200
INTERDISCIPLINARY ENGINEERING

Undergraduate

EID 101 Engineering Design and Problem Solving
Students work on cutting-edge, exploratory design projects in interdisciplinary groups of 20 to 25. Each project has an industrial sponsor/partner who is available for student/faculty consultation and support. Oral and visual presentations as well as formal written reports are required for all projects. Professional competencies, teamwork, human values and social concerns are stressed in the engineering design. 3 credits. Open to all students.

EID 102 Engineering Graphics
An introduction to graphical representation of 3-dimensional objects. After learning the principles of technical drawing using precision hand tools, students utilize CAD software to create professional caliber engineering drawings. An introduction to solid modeling is given. Topics include orthographic projections, linetypes, geometric dimensioning and tolerancing, layers, layouts, solid modeling, part assemblies and finite element analysis. 1 credit. Prerequisites: none.

EID 210 Engineering Design Graphics
In this class, Building Information Modeling (BIM) is used to create both Architectural and Structural models. Along the way, students learn about the Revit Program’s user interface & modeling tools essential for working with 3D models. Other topics include creating Sheets, Custom Building Elements, Topography, Landscaping, Perspectives, Rendering & Animation. As students gain expertise in using Revit, they are assigned various Structural & Architectural projects to develop and present to the class. At the end of the semester, a Final Independent Design Project is presented by each student using the Revit Modeling Program. 3 credits. Open to all students.

EID 222 Biomaterials
The course is a study of both natural and synthetic materials and how they interact with the human body. Topics covered include mechanical properties, design considerations, biocompatibility, the immune response, potential for allergic response and carcinogenic ramifications, mechanical compatibility, effects of long-term implantation, and government regulations. Students will develop a vocabulary for different classes of biomaterials and explore how atomistic properties influence larger scale morphology and macroscopic behavior inside the human body. After a general introduction to biomedical materials, case studies involving physiological systems are considered, and design of artificial parts and materials are investigated. 3 credits. Prerequisite: permission of instructor
EID 270 Engineering Economy
Comparison of alternatives in monetary terms; meaning and use of interest rates; results evaluation including intangibles; risk in alternatives; principles underlying the determination of economic life; depreciation and depreciation accounting; financing business ventures; financial statement analysis; replacement of capital assets. 3 credits.

EID 334 The Science and Art of Brewing
A study in the history of brewing as well as recent brewing innovation and entrepreneurship. Tours of local breweries and distilleries may be arranged. Hands-on instruction in the use of electric brewing equipment to brew 8-10 times over the course of one semester. Technical aspects of this course will cover the fundamentals of water chemistry, sanitation, wort production and equipment, microbiology and yeast health, fermentation, the design of beer and the diagnosis of off-flavors. Students will additionally design and host an exhibition that illustrates the science and art of brewing, open to the Cooper Union community. The course will culminate in a capstone design of a fermented beverage. 3 credits.

EID 370 Engineering Management
An exploration of the theories and techniques of management beginning with the classical models of management and continuing through to Japanese and American contemporary models. The course is specifically directed to those circumstances and techniques appropriate to the management of engineering. Lecture, discussion and case studies will be used. 3 credits. Prerequisite: permission of instructor

Graduate

EID 424 Bioengineering Applications in Sports Medicine
Application of engineering principles to athletic performance and injury. Topics include athletic training; mechanical causes of sport injuries; methods of injury prevention; design of protective and prophylactic sport devices; proper application of wound dressing, taping and bandaging; first aid for musculoskeletal sports injuries and healing and rehabilitation. Students will work in teams on case studies and projects. 3 credits. Prerequisite: permission of instructor

EID 469 Independent Study Project Same as CE 469. 3 credits.
BIOLOGY

Bio 201 Biology for Engineers I
This course will examine in depth the genetics, molecular and cellular biology, pathology, toxins, microbiology and environment as they relate to humans and disease using organ-based or systems biology approaches (e.g., gastrointestinal pulmonary, cardiovascular, urinary endocrine, etc.) Major assignments will be individualized to student’s interests and majors when possible. As such, this course will provide the biological fundamentals for further study in biotransport, biochemistry, graduate school in biomedical engineering, etc. Combined with Biology 202 and Biochemistry, it will provide a solid foundation for medical school. 3 credits. Prerequisites: Ch 110 or permission of the instructor. Credits includes lab experience.

Bio 364 Bioengineering Research Problem
An elective course available to qualified and interested students recommended by the faculty. Students may approach a faculty mentor and apply to carry out independent research or group project in bioengineering-related fields. 3 credits. Prerequisite: permission of instructor and approval of ME or ChE department chair.

Graduate

Bio 422 Protein Expression, Purification and Analysis
Lectures cover chemical properties of proteins, protein folding, solubility, charge, structure, post-translational modifications; protein synthesis, recombinant protein expression including cloning strategies, expression plasmids, expression systems; chromatography techniques for protein purification. Laboratory work involve making gels and SDS-PAGE electrophoresis, purification of native proteins with ion exchange and salting out technique; purification of GST tagged proteins on glutathione agarose column and His-tagged proteins on Ni-NTA column; measuring of protein concentration and assays for protein activity; Western blot. 3 credits. Prerequisites: Bio 201 and Ch 340 or permission of instructor.
CHEMISTRY

Undergraduate

Ch 110 General Chemistry
An introduction to the general scientific principles associated with chemistry. This course will deal with fundamental ideas such as the concept of the atom, the molecule, the mole and their applications to chemical problems. The classical topics include: dimensional analysis and significant figures; atomic weights; periodic properties; chemical reactions and stoichiometry; redox reactions; ideal gas law and real gas equations of state; the liquid state and intermolecular forces; solution concentrations; chemical equilibrium and equilibrium constants; acids and bases; solubility equilibria; nomenclature of inorganic and organic compounds. The topics for atomic and molecular properties include: atomic structure and the quantum theory; electronic structure of atoms; the covalent bond and bond properties; molecular geometries and hybridization; molecular orbital theory. 3 credits. Open to all students.

Ch 111 General Chemistry Laboratory
Methods of quantitative analysis are used to explore chemical reactions and analyze unknowns. Modern chemical instrumentation as well as ‘classic’ wet chemistry analytical techniques are covered. Statistical analysis of the experimental data is used to analyze results. Chemical laboratory safety and industrial chemical regulations are covered, as are the fundamentals of writing a technical report. 1.5 credits. Prerequisite: CH110.

Ch 231 Organic Chemistry I
Bond types and strengths, structural theory, bond angles and hybrid bonds; covalent bonds, polarity of bonds and molecules; dipole moments; molal refraction; melting points and boiling points relative to properties and natures of molecules; solubilities based on structures; functional groups; critical temperature, pressure and volume as a function of structure and functional groups, prediction of vapor pressure curves, latent heats. Nomenclature isomers and properties. Resonance and delocalization of charge phenomena; acidity and basicity (Lewis concept). 3 credits. Prerequisite: Ch 160

Ch 340 Biochemistry
This course in the fundamentals of biochemistry will cover the following: Chemistry of carbohydrates, lipids, amino acids, proteins, and nucleotides; bioenergetics; kinetics and mechanisms of enzymes; and an introduction to molecular genetics, and biochemical dynamics of DNA and RNA. 3 credits. Prerequisites: Bio 201 and Ch 231
Ch 351 Instrumental Analysis Laboratory
Fundamental principles of instrumental methods will be covered, including laboratory applications and limitations in scientific research. Specific methods include electro-metric, such as polarography, electro-gravimetry and potentiometry; optical (such as visible and ultraviolet absorption), spectroscopy, emission spectroscopy and infrared spectroscopy; and other techniques such as chromatography and mass spectroscopy shall be included. 2 credits (4 laboratory hours). Prerequisite: Ch 160 and Ch 233

Ch 361 Physical Chemistry I
With an emphasis on the basic theoretical justifications underlying observed physical phenomena, quantum mechanics will be developed and applied to the study of chemical systems with an emphasis on interpreting spectroscopic data. Modern methods of computational molecular modeling are introduced. Statistical mechanics is introduced as a link between quantum mechanics and thermodynamics.
3 credits. Prerequisites: Ch 160 and Ph 214

Ch 391 Research Problem I
An elective course available to any qualified and interested student irrespective of year or major. Students may approach a faculty member and apply to carry out independent research on problems of mutual interest, in pure or applied chemistry. Topics may range from the completely practical to the highly theoretical, and each student is encouraged to do creative work on his or her own with faculty guidance.
3 credits. Prerequisite: permission of instructor

Ch 392 Research Problem II to VIII
This is intended to allow students to continue ongoing research. 3 credits each.
Prerequisite: permission of research adviser and student’s adviser(s)

Graduate

Ch 460 Statistical Mechanics and Computational Chemistry
Topics covered include: Quantum and classical statistical mechanics, phase space, and fluctuations. Intermolecular forces and their experimental and theoretical determination. Computational molecular modeling, including Monte Carlo and molecular dynamics methods. Applications to gases, liquids, solids, spin systems, nanoclusters, polymers, surface adsorbates and biomolecules are considered.
3 credits. Prerequisites: Ch 361, Ch 362 or permission of instructor
COMPUTER SCIENCE

CS 102 Introduction to Computer Science
Concepts in computer science are presented in the context of programming in C, with a brief introduction to Python. Topics include variables, selection statements, loops, functions, structures, pointers. Multiple programming projects are assigned. 2 credits.

MATHEMATICS

Undergraduate

Ma 110 Introduction to Linear Algebra
Vectors in two- and three-dimensions, vector algebra, inner product, crossproduct and applications. Analytic geometry in three dimensions: lines, planes, spheres. Matrix algebra; solution of system of linear equations, determinants, inverses. 2 credits. Prerequisites: none

Ma 111 Calculus I
Functions; limit of functions, continuity. The derivative and its applications: curve sketching, maxima and minima, related rates, velocity and acceleration in one-dimension; trigonometric, exponential, logarithmic and hyperbolic functions. Definite and indefinite integrals; area, the fundamental theorem, techniques of integration. 4 credits. Prerequisites: none

Ma 113 Calculus II
Applications of definite integrals: area, volume, improper integrals, work, arc length, surface area, centroid. Polar coordinates. Parametric curves in two and three-dimensions: velocity, speed and accelerations. Partial derivatives and the chain rule, properties of the gradient. Maxima and minima. Sequences and series: convergence of sequences and series, Taylor and Maclaurin series, power series. 4 credits. Prerequisite: Ma 111; prerequisite or corequisite: Ma 110

Ma 223 Vector Calculus
Double and triple integrals and their applications. Vector fields. Gradient, divergence and curl. Line and surface integrals. Theorems of Green, Gaussand Stokes. Path independence of line integrals. 2 credits. Prerequisites: Ma 110 and Ma 113. Usually given in fall and spring semesters
Ma 224 **Probability**

Ma 240 **Ordinary and Partial Differential Equations**
Ordinary differential equations of the first order. Linear equations of higher order with constant coefficients. Power series solutions. Laplace transformation. Fourier series. Partial differential equations: method of separations of variables, applications to vibration and heat flow. 3 credits. Prerequisite: Ma 113

Ma 326 **Linear Algebra**

Ma 336 **Mathematical Statistics**

Ma 370 **Selected Topics In Mathematics**
This is a seminar course involving discussion of topics in pure or applied mathematics that will be chosen by mutual agreement between the students and the instructor. Students will work independently on projects that may be of special interest to them. 3 credits. Prerequisites: Ma 326 and permission of the mathematics faculty
PHYSICS

Undergraduate

Ph 213 Physics II: Electromagnetic Phenomena
Oscillations; transverse and longitudinal waves. Electric fields; Gauss’ Law; electric potential; capacitance; D.C. circuits; magnetic fields; Faraday’s law; inductance; A.C. circuits; electromagnetic waves. 4 credits. Prerequisite: Ph 112; corequisite: Ma 223

Ph 291 Introductory Physics Laboratory
Physical measurements and analysis of experimental data. The experiments test and apply some basic principles selected from the following fields: mechanics, sound, electromagnetism, optics and modern physics. Experiments and topics may vary each semester. Digital and analog laboratory instruments; computer acquisition and analysis of data. Estimate of systematic and random error, propagation of error, interpretation of results. This course complements three lecture courses, Ph 112, Ph 213, Ph 214. 1.5 credits. Prerequisite: Ph 112; corequisites: Ph 213, Ma 240

Ph 360 Special Projects in Physics
Special projects in experimental or theoretical physics. Credits and prerequisites determined in each case by the physics faculty

VERTICALLY INTEGRATED

PROJECTS (VIP)

Multidisciplinary course supporting student and/or faculty-initiated projects guided by faculty mentorship and professional research. Undergraduate students that join VIP teams earn one credit each semester for their participation in design/discovery efforts that enable them to explore their interests through long term projects. Students are encouraged to take the course for at least three consecutive semesters.
Students
• In the first semester, they will familiarize themselves with the project, gain knowledge/skills, and begin making meaningful contributions.
• In the second semester, they will begin to master the foundations within the discipline, pursue needed knowledge/skills, make meaningful contributions, and assume technical/leadership responsibilities.
• In the third semester, they will have mastered the foundations within the discipline, pursue further knowledge/skills, make meaningful contributions, and assume significant technical/leadership responsibilities.
• In the fourth semester, they will pursue needed knowledge/skills, make meaningful contributions, provide leadership in technical area and team management.

The teams are
• Multidisciplinary—drawing students from all disciplines on campus;
• Vertically-integrated—maintaining a mix of freshmen through senior students each semester;
• Long-term—each undergraduate student may participate in a project for up to three years.

The continuity, disciplinary depth, and professional breadth of these teams intend to
• Provide the time and context necessary for students to learn and practice many different professional skills, make substantial technical contributions to the project, and experience many different roles on a large, multidisciplinary design/discovery team.
• Support long-term interaction between the students and faculty on the team. The more senior students mentor the undergraduates as they work on the design/discovery projects embedded in the course.
• Enable the completion of large-scale design/discovery projects that are of significant benefit to faculty members’ research.

Course Pre-requisites
Students must be pursuing their undergraduate degree in order to enroll in VIP for credit. Enrollment is based on a rolling application process with a decision made before the beginning of each semester.
Undergraduate

VIP 381A Smart Cities
The Autonomy of “Smart” Cities is a cross-disciplinary course that is dedicated to finding technology-based solutions to some of the most pressing issues that are currently facing our cities. This course will focus on closed-loop systems in order to explore a more sustainable transportation, energy, and urban agricultural structures that promote the autonomy of our communities and enhance the livability of our cities. Students will be expected to develop complete solutions (design and implementation) integrating ideas and concepts from different disciplines such as: design, ML, Robotics, IoT, hardware design, vision, lighting, and control theory. Example Projects:
• Self-Drive: an autonomous vehicle project.
• Net-Zero-Surrey: designing a sustainable transportation solution for more livable future cities.
• Urban Agriculture: enabling the urban community to produce their own food.
• Robotics Arms: modeling human motion with robotics arms.
• Drones: sling load and cooperative drones
1 Credit

VIP 381B Solar Decathlon
The Solar Decathlon course forms a cross-disciplinary team that engages in a design phase and a build phase of highly efficient and innovative buildings powered by renewable energy. Students are expected to prepare creative solutions for real-world issues in the building industry. The focus of this course will be High-performance building design includes comprehensive building science, energy efficiency, optimized structural and mechanical systems, indoor air quality, resilience, and water conservation while maintaining the highest spatial design standards. Engineering students will be working closely with Architects to design an efficient and innovative system to support the functional and aesthetic characteristics of their projects while experimenting with the use of standard as well as unconventional materials. Students will be taught the basics of statics, strength of materials, structural analysis and design. Teams will be expected to participate in the Solar Decathlon Design and Build Challenge: https://www.solardecathlon.gov/about.html.
Course Objectives

- Introduce students to state-of-the-art industry standard technology to better prepare them to enter the workforce.
- Allow students to engage with their specialized knowledge and skills in the contexts of a team-based research project.
- Provide students with the opportunity to conduct research at an early stage to better prepare them for possible academic careers.
- Enable students to work in multidisciplinary teams in the pursuit of designing effective solutions to modern complex issues. 1 Credit

VIP 381C Motorsports
For undergraduates: junior standing and must have completed 2 semesters of prior undergraduate VIP course work. Prerequisites: Permission of instructor.
Students may not take more than 3 credits of graduate level VIP. 1 Credit

Graduate

VIP 481 Smart Cities
The Autonomy of “Smart” Cities is a cross-disciplinary course that is dedicated to finding technology-based solutions to some of the most pressing issues that are currently facing our cities. This course will focus on closed-loop systems in order to explore a more sustainable transportation, energy, and urban agricultural structures that promote the autonomy of our communities and enhance the livability of our cities. Students will be expected to develop complete solutions (design and implementation) integrating ideas and concepts from different disciplines such as: design, ML, Robotics, IoT, hardware design, vision, lighting, and control theory.
Example Projects:
- Self-Drive: an autonomous vehicle project.
- Net-Zero-Surrey: designing a sustainable transportation solution for more livable future cities.
- Urban Agriculture: enabling the urban community to produce their own food.
- Robotics Arms: modeling human motion with robotics arms.
- Drones: sling load and cooperative drones
Prerequisites: Permission of instructor. For undergraduates: junior standing and must have completed 2 semesters of prior undergraduate VIP course work. Students may not take more than 3 credits of graduate level VIP. Prerequisites: Permission of instructor. For undergraduates: junior standing and must have completed 2 semesters of prior undergraduate VIP course work. Students may not take more than 3 credits of graduate level VIP. 1 credit.
VIP 481A Solar Decathlon
The Solar Decathlon course forms a cross-disciplinary team that engages in a design phase and a build phase of highly efficient and innovative buildings powered by renewable energy. Students are expected to prepare creative solutions for real-world issues in the building industry. The focus of this course will be High-performance building design includes comprehensive building science, energy efficiency, optimized structural and mechanical systems, indoor air quality, resilience, and water conservation while maintaining the highest spatial design standards. Engineering students will be working closely with Architects to design an efficient and innovative system to support the functional and aesthetic characteristics of their projects while experimenting with the use of standard as well as unconventional materials. Students will be taught the basics of statics, strength of materials, structural analysis and design. Teams will be expected to participate in the Solar Decathlon Design and Build Challenge: https://www.solardecathlon.gov/about.html.

Course Objectives:
• Introduce students to state-of-the-art industry standard technology to better prepare them to enter the workforce.
• Allow students to engage with their specialized knowledge and skills in the contexts of a team-based research project.
• Provide students with the opportunity to conduct research at an early stage to better prepare them for possible academic careers.
• Enable students to work in multidisciplinary teams in the pursuit of designing effective solutions to modern complex issues.

1 Credit. Prerequisites: Permission of instructor.

VIP 481C Motorsports
Prerequisites: Permission of instructor.
Students may not take more than 3 credits of graduate level VIP. 1 Credit
ADMINISTRATION, FACULTY AND STAFF

Administration
Barry L. Shoop
Dean; Professor, Electrical Engineering
B.S., Electrical Engineering, Pennsylvania State University; Ph.D., Electrical Engineering, Stanford University
Ruben Savizky
Associate Dean for Academic Affairs; Professor, Chemistry
Ph.D., M.S., Chemistry, Yale University; B.E., Chemical Engineering, The Cooper Union
Lisa A. Shay
Associate Dean for Educational Innovation; Professor
Ph.D., Electrical Engineering, Rensselaer Polytechnic Institute; M.A., National Security and Strategic Studies, Naval War College; M.A., Pastoral Studies, Fordham University; B.S., Electrical Engineering, U.S. Military Academy, West Point
Maria Jimenez
Administrative Associate
Elizabeth Leon
Administrative Associate
Nori Perez
Administrative Manager
Betsy Quitugua
Administrative Assistant
Beth Slack
Administrative Associate
Budget Analyst
Elizabeth Waters
Associate Director, STEM Outreach

Full-Time Faculty
Om Agrawal
Professor; Chair of Mathematics
B.A., Kalahandi College, India; M.A., Sambalpur University, India; Ph.D., SUNY at Stony Brook
Melody Baglione
Professor; George Clark Chair of Mechanical Engineering
B.S.M.E., Michigan Technological University; Houghton, M.S.M.E., Ph.D., University of Michigan, Ann Arbor
Fabiola Barrios-Landeros
Assistant Professor, Chemistry
B.S., Chemistry, National Autonomous University of Mexico (UNAM); M.S., Ph.D., Organometallic Chemistry, Yale University
Joseph C. Cataldo
Professor, Civil Engineering
Benjamin J. Davis
Professor, Chemical Engineering
Ph.D., Chemical and Biomolecular Engineering, University of California at Los Angeles; B.S., Chemical and Biomolecular Engineering, Cornell University
Fred L. Fontaine
Jesse Sherman Professor, Electrical Engineering; Chair of Electrical Engineering; Director of the Retraining Program for Immigrant Engineers
B.E., M.E., The Cooper Union; M.S., New York University, Courant Institute of Mathematical Sciences; Ph.D., Stevens Institute of Technology
Vito A. Guido
Professor, George Fox Chair of Civil Engineering

Sam Keene
Professor, Electrical Engineering
Ph.D., Electrical Engineering, Columbia University, NY; M.S., B.S., Electrical Engineering, Boston University
Stuart Kirtman
Associate Professor, Electrical Engineering
B.E., M.E., The Cooper Union
Ph.D., Brown University
Ja-beom “JB” Koo
Assistant Professor, Electrical Engineering
B.S., M.S., Korea University, South Korea
Cynthia Lee
Assistant Professor, Civil Engineering
Ph.D., Chemical Engineering, Georgia Institute of Technology
Daniel H. Lepek
Professor, Chemical Engineering
B.E., Chemical Engineering, The Cooper Union; Ph.D., Chemical Engineering, New Jersey Institute of Technology
Eric Lima
Professor, Mechanical Engineering; Director, The Open-Source Hardware Laboratory
Ph.D., Biomedical Engineering, Columbia University, NY
Dirk Martin Luchtenburg
Assistant Professor, Mechanical Engineering
Stanislav Mintchev
Associate Professor, Mathematics
Ph.D., M.S., Mathematics, Courant Institute of Mathematical Sciences, New York University; BS Physics, BS Mathematics, The George Washington University, Washington, DC.
Andrea Newmark
Professor; Chair of Chemistry
B.A., Queens College, CUNY;
M.S., Ph.D., Columbia University

Ogbonnaya Charles Okorafor
Professor; Chair of Chemical Engineering
B.Sc., University of Lagos
M.A.Sc., Ph.D., University of British Columbia

Alice Pisani
Assistant Professor, Physics
Ph.D., Astrophysics, Sorbonne University, Paris

Michelle Rosen
Assistant Professor, Mechanical Engineering
Ph.D., Engineering Sciences/ Mechanical Engineering, Harvard University, Cambridge

Carl Sable
Professor, Computer Engineering
B.S.E., Electrical Engineering, Princeton University; M.S., Ph.D., Computer Science, Columbia University, NY

Mili Shah
Associate Professor, Mathematics
PhD, Rice University

Neveen Shlayan
Assistant Professor, Electrical Engineering
Ph.D., Electrical Engineering, University of Nevada, Las Vegas

George W. Sidebotham
Professor, Mechanical Engineering
Ph.D., Princeton University

Amanda Simson
Assistant Professor, Chemical Engineering
B.S., Aerospace Engineering, University of Virginia; Ph.D., Columbia University

Robert W. Smyth
Professor, Mathematics

Robert Q Topper
Professor, Chemistry
B.S., Physics and Chemistry, Florida State University; M.S., M. Phil., Ph.D., Theoretical Physical Chemistry, Yale University

Cosmas Tzavelis
Professor, Civil Engineering
Ph.D., Civil Engineering/Engineering Mechanics, Columbia University

Jennifer Weiser
Assistant Professor, Chemical Engineering
B.S., Chemical Engineering, Rensselaer Polytechnic Institute; M.S., Ph.D., Biomedical Engineering, Cornell University

David M. Wootton
Professor, Mechanical Engineering
B.S., Cornell University; M.S., MIT; Ph.D., Georgia Tech

Kamau Wright
Assistant Professor, Mechanical Engineering
B.S., Mechanical Engineering, Howard University; M.S., Ph.D., Mechanical Engineering, Drexel University

Constantine Yapijakis
Professor, Civil Engineering
Diploma, National Technical University of Athens, Greece; M.S., New York University; Ph.D., Polytechnic University

Philip Yecko
Professor, Physics; Chair of Physics
Ph.D., Columbia University; S.B., Physics, M.I.T.

Adjunct Faculty
Zinoviy Akkerman
Tensae Andargachew
Michael Bambino
Robert Barrett
Peter Bastos
Mohammed Billoo
Sheryl Birke
Scott N. Bondi
Ingrid Burrington
Thomas Carberry
Andy Cavatorta
Dong Chang
Michael Chen
Christopher Curro
Sean Cusack
Brian Cusack
David Daddario
Partha P. Debroy
Robert Dell

Thomas Koch
Kevin S. Kolack
Ian J. Kremenic
Michael Kumaresan
Lembit Kutt
Brian Frost LaPlante
Lawrence Lennon
Benjamin Menschel Visiting Professor in Engineering
Richard Lo
Ethan Lusterman
Matthew Mahon
Ericson Mar
Robert Marano
Oliver Medvedik
Director of the Kanbar Center for Biomedical Engineering
Shivam Mevawala
Analee Miranda
Abel Navarro
Cory Nezin
Nebahat Noyan
Alfonso Oliva
Karl Orishimo
Katherine M. Panchyk
Michael Petralia
David Petrillo
Daniel Radoff
Estuardo Rodas
Laboratory Manager and Project Coordinator, Mechanical Engineering
Michelle Roelofs
Kang [Ken] Shih
Robert Smilowitz
Eugene Sokolov
Daniel M. Speyer
Joseph Viola
Samuel Wiener
Bogdan Wilk
Hui (Grace) Yu

Staff
Christian Carter
Lab Technician: Chemistry and Chemical Engineering Departments
Kok Ren Choy
Biologically Research Fellow
Brian Cusack
Director of Campus Enterprise Applications
Michael Giglia
Makerspace Manager
Sina Janjusevic
Technician & Machinist
Radmila Janjusevic
Biomedical Engineering Laboratory Technician; Student Project Coordinator
Aladino Melendez
EE Supervisor, EE Technician
John Osburn
Associate Director, Engineering Communication Workshops
Revans Ragbir
Chemistry Lab Technician
Estuardo Rodas
Laboratory Manager and Project Coordinator, Mechanical Engineering
Douglas Thornhill
Laboratory and Technician Manager, Mechanical Engineering
Luis Vega
Technician
Brian Yudin
Student Shop/ME Design Studio Technician

Administration and Faculty Emeriti
Eleanor Baum
Dean Emeritus
Simon Ben-Avi
Professor Emeritus
John Bove
Professor Emeritus
Shang-I Cheng
Professor Emeritus
Wallace Chinitz
Professor Emeritus
Ralph L. Knapp
Professor Emeritus
Jean Le Mee
Professor Emeritus
Melvin Sandler
Professor Emeritus

ENGINEERING ADVISORY COUNCIL MEMBERS
Steven Welby ChE ’87
Chair of EAC. Executive Director and COO, IEEE. Former Assistant Secretary of Defense for Research and Engineering; Chief Technology Officer of the US Department of Defense. Previously, DARPA.
Leah Jamieson
John A. Edwardson Dean Emerita of Engineering and Ransburg Distinguished Professor of Electrical and Computer Engineering, Purdue University. Member National Academy of Engineering.
Bernie Meyerson
Vice President for Innovation and leads IBM’s Global University Relations Function. In that role he leads the creation of major IBM collaborative initiatives with companies and governments around the globe. He is also responsible for the IBM Academy. Member National Academy of Engineering.
Rick Stamper
Provost and Vice President of Academic Affairs, Rose-Hulman Institute of Technology. Previous positions include area manager at Proctor & Gamble and Design Team Leader at General Electric, and he also formed a small company to develop medical devices. He was named one of America’s ‘Best 300 Professors’ in 2012 by Princeton Review.

Chemical
Lynn Cusack ChE ’04
New Business Ventures Manager, Infineum USA L.P., Linden Business and Technology Center, NJ.
Heather Kulik ChE ’04
Associate Professor of Chemical Engineering, Massachusetts Institute of Technology.
Lisa Liu ChE ’13
Solutions Engineer, Carbon Lighthouse.
Margot Vigeant
Professor of Chemical Engineering, Bucknell University. Fellow of the American Society for Engineering Education.

Civil
Gregory L. Biesiadecki CE ’81, MCE ’83 – Principle, Langan Engineering & Environmental Services; As a geotechnical engineer he leads the waterfront and marine engineering team. Former Chair of the American Society of Civil Engineers (ASCE) Metropolitan Section Geotechnical and Forensics Groups and former member of the Board of Directors and Treasurer.
Jessica Friscia CE ’11
Project Environmental Engineer, Langan Engineering & Environmental Services. ME MIT. Named a Beverly Willis Architecture Foundation Emerging Leader and received the CREW NY Impact Award for Economic and Community Improvement.
Nicholas Tsapatsaris
President & CEO, Nick Tsapatsaris & Associates. BSCE 1986 and MSSE 1987 Worcester Polytechnic Institute (WPI). MS in Real Estate, MIT. Large scale architecture, engineering, construction and ownership of real estate. Member of WPI’s Architectural Engineering Advisory Board and the Engineering Dean’s Council.
Anne Dudek Ronan CE ’83, MCE ’84
Ph.D. Stanford University, Industry Professor at the NYU Tandon School of Engineering, 2015 recipient of the NYU School of Engineering Distinguished Teacher Award which is the university’s highest teaching honor.

Electrical
Sankar Basu
Program Director at the National Science Foundation. Prior to NSF at the IBM T. J. Watson Research Center. After receiving a PhD from the University of Pittsburgh he served on the faculty of Stevens Institute of Technology. Served on editorial boards of about 10 journals including being the Editor-in-Chief of the IEEE Transactions on Circuits and Systems, and currently serves on the editorial board of Proceedings of the IEEE. Fellow of IEEE and AAAS.

Bryan Conroy EE, MEE ’05
Kamran Mahbobi
EE ’89, MEE ’91 – Cofounder and Managing Director of Maxentric Technologies, LLC. Previously, Chief Technology Officer of Tetra Tech Wireless. 2009 Cooper Union President’s Citation Award.
Nadia Pervez EE ’99
COO Chromation. Former CEO. PhD in Electrical Engineering, UCSB. Postdoc at Columbia University, 2008-2010.

Mechanical
David Barrett
Professor of Mechanical Engineering, Olin College. Previously Vice President of Engineering at the iRobot Corporation, Director of the Walt Disney Imagineering Corporation, Research Engineer at MIT’s Artificial Intelligence Laboratory, and Technical Director at Draper Laboratory.
Neil Muir ME ’14, MME ’16
Arup (Arup is an independent firm of designers, planners, engineers, architects, consultants and technical specialists, working across every aspect of today’s built-environment).
Gunnar Tamm ME ’96
Professor of Mechanical Engineering, U.S. Military Academy, West Point, NY. MS Rutgers University, Ph.D. University of Florida.
Paige Holland Thielen ME ’11
Lead Avionics Operations & Automation Engineer, Satellite R&D at SpaceX. MSME University of Washington
FACULTY OF THE HUMANITIES AND SOCIAL SCIENCES

Mission
The Cooper Union is committed to the principle that an education in the Humanities and Social Sciences provides the ethical, social and humanistic framework crucial to personal development, professional excellence, and engaged citizenship. Through their work in HSS disciplines, students will gain a deeper awareness of the world in which they must live and act. They learn to think, write and speak clearly and effectively. Most significantly, an education in the liberal arts offers students the opportunity to become attentive to the social and humanistic implications of their professional work and to acquire the basis for a satisfying cultural and intellectual life.

Curriculum
All students take a four-semester core curriculum of required courses in the humanities and social sciences. In addition, students in the School of Art take a required sequence in art history. The core curriculum is a prerequisite to all elective offerings in Humanities and Social Sciences. During the third and fourth years, students have considerable latitude to explore the humanities and social sciences through elective courses. All students are expected to take core curriculum courses at The Cooper Union.

Minor
Students who complete a minimum of 12 upper-division credits in a specific field of liberal arts may qualify for a minor in that field of Humanities and Social Sciences. Minors are offered and may be designated on student transcripts in the following five fields. Please contact HSS Academic Advisor, Professor Sohnya Sayres.

Art History
Economics and Public Policy
History and Society
Literature
Science, Technology, and Society
HSS Program Level Objectives

The objective, supporting The Cooper Union’s overarching mission, is to instill an understanding of the breadth and richness of intellectual discovery across the humanities and social sciences. This includes developing a familiarity with representative literary texts, major historical themes and ideas, and analytical methods. Students will learn how to relate this humanistic knowledge to their professional, civic, and personal lives. This broad objective might be further articulated as:

- Developing in the student skills in critical analysis within a range of disciplinary structures
- Developing in the student skills necessary for engaged citizenship
- Developing an appreciation of world cultures and of America within a global context
- Developing in the student skills in writing and non-written expression enabling that student to take part in active citizenship and to compete effectively in her or his professional arena

HSS Course Objectives

HSS Core

By the end of the four-course sequence, we expect students will be able to:

- Analyze literary texts as both aesthetic objects and cultural artifacts
- Contextualize cultural understanding within a set of political, economic, and scientific developments
- Identify transformations in political, economic, social, scientific, and civic experience over time
- Consolidate analytical, contextual, and historical understanding through argumentation, comparison, and research

HSS1 The Freshman Seminar

HSS1 develops college-level skills in reading and writing, analysis, and argumentation through engagements with major texts and themes. Through close reading and extended discussion, students learn to craft evidence based arguments in written and spoken form. Students experience one of four tracks that share the common goals of encouraging aesthetic understanding of the literature of major historical periods and developing the writing and speaking skills necessary for college-level work.
HSS2 Text and Contexts: Old Worlds and New

Through the semester students will:

- Engage with foundational texts in the creation of the Modern age through close reading and class discussion. Students develop further their skills in reading and interpreting a range of texts in a range of genres (letter, report, treatise, essay, drama, non-fiction narrative).

- Describe how course texts differently perform, reflect upon, elide or otherwise register the major social, political, and intellectual developments of their respective periods, in particular a) the transformations and conflicts produced by European expansion, b) the movement of ideas, people, and commodities across oceans, c) the reception of ideas and impact of migration and commerce within regions and emerging national contexts.

- Distinguish, and provide critical definitions for, the major periods and movements in the Early Modern Period, specifically History—Renaissance Humanism, the Reformation, the Puritan Revolution and the Enlightenment—with an appreciation for the problems of periodization.

- Outline the contribution of the Scientific Revolution to the nature of knowledge, and describe in more detail the role of one major figure such as Bacon, Galileo, Descartes or Newton.

- Trace and analyze, by citing specific authors and historical experiences, the changing conceptions of the political realm, including the development of the modern state; the relationship between politics and religion; and the rise of political individualism.

HSS3 The Making of Modern Society

The Making of Modern Society is a history course in which students explore the key political, social and intellectual developments of the nineteenth and twentieth centuries. The course is organized chronologically, beginning with the Industrial and French Revolutions and ending with the transformations brought about by the end of the Cold War and the challenges of twenty-first century violence and globalization. Lectures provide students with an analysis of particular events and a survey of change over time. In their work in sections students discuss how assigned readings, including contemporary texts, illuminate the complexities of historical experiences of modernity. Throughout the semester students will use a textbook that outlines the historical links and comparisons between Europe, Asia, Africa, the Americas, and the Middle East. Students will learn:
• To identify and trace the transformations in politics brought about by challenges to the old regime in Europe and the Americas and changing ideals of political, civil and human rights
• To identify and trace the transformations in society, economy and politics brought about by urbanization, industrialization, and the rise of industrial capitalism
• To identify and trace experiences of empire, war, and genocide, and their contemporary legacy, in Europe, Asia, Africa and the Americas. With the goal of broadening historical understanding, developing clear communication skills, and improving research skills students will write analytic essays, read texts, and speak and discuss with each other about issues that engage them as professionals in training and citizens of their local, national, and global communities.

HSS4 The Modern Context: Figures and Topics

HSS4 introduces students to the process of writing and research in the humanities and social sciences by focusing on a critical figure or topic from the modern period for the duration of the semester, cultivating depth of understanding rather than breadth of knowledge. Toward this end, the course develops the skills that students need to:

• Produce a substantial research essay with an original argument
• Marshal a variety of secondary sources (e.g., books, journal articles, images, Internet resources, interviews) in support of the argument
• Present research findings in oral form
• Engage in collaborative research activities (e.g., peer review, group projects)
• Master the conventions of citing both primary and secondary sources

CURRICULUM

Core Curriculum

Peter Cooper believed that a truly practical education should offer students a means of livelihood and a sense of intellectual curiosity as well as encouraging involvement in the cultural and political life of the city and the nation. So important did he hold the education of the citizenry to be that courses in the social sciences were to be considered preeminent. The core curriculum offered by the Faculty of Humanities and Social Sciences continues Peter Cooper’s commitment to liberal learning, social awareness and active citizenship. Through critical examination and discussion of primary materials students develop a broad understanding of the origins of modern
society and the conflicts within it. The courses encourage conversation and collaboration to engender a community of inquiry and expertise, preparing students for professional careers and for active participation in society.

The core curriculum of Cooper Union is a required four-semester sequence from HSS1: Literary Forms and Expressions through HSS4: The Modern Context. The core curriculum requirement is satisfied by completing these four semesters in order. HSS1 and HSS3 are offered in fall semesters; HSS2 and HSS4 are offered in spring semesters.

HSS 1: The Freshman Seminar A literature course concentrating on poetry and drama. Selected texts from antiquity and the Renaissance are common to all sections.

HSS 2: Texts and Contexts: Old Worlds and New A study of texts and topics from 1500 to 1800. Sections read common texts and some selections by individual instructors, with emphasis on literary expression and cultural context. Requirements include written analysis and class discussion.

HSS 3: The Making of Modern Society A study of the key political, social and intellectual developments of modern Europe in global context. This course is organized chronologically, beginning with the Industrial and French Revolutions. Monday 11-12 lecture in LL117 (Rose Auditorium). All students enrolled in HSS3 must attend the Monday 11-12 lecture in addition to one of the below sections.

HSS 4: The Modern Context: Figures and Topics A study of important figures or topics from the modern period whose influence extends into Contemporary culture. Requirements include individual research and writing projects. In choosing a section, students should consider its figure or topic for study.

Art History (HTA 101, 102) While contributing to the required curriculum of students enrolled in the School of Art, both the Art History Core and art history electives are also available to students in the other Schools.

HTA 101, 102 Modern to Contemporary: An Introduction to Art History This two-semester art history core course, developed as part of the Foundation year for students in the School of Art but open to all students, is organized around a set of themes running through the history of modernity from the 18th century to the present. Within specific themes, significant works, figures, and movements in art/design will be presented chronologically. Students will be able to identify and critical evaluate significant works, figures, and movements in art/design in the modern period; be able to describe the main social and political contexts for the changes in art/design over the last two hundred years; and engage, in writing and class discussion, with theoretical perspectives on art/design production. The course will involve museum visits. Grading will be based on class participation, papers, and exams.
Electives
The Faculty of Humanities and Social Sciences offers a varied and flexible elective program that provides rigorous study while responding to the changing needs of students. The complete Cooper Union course catalog with course descriptions, academic standards and other useful information is available online and maintained by the Registrar’s office.

HSS Policy on Plagiarism and Academic Dishonesty
Plagiarism is the presentation of another person’s words, phrases, ideas, or conclusions as your own—even when the identity of the person is not known, as is often the case with sources on the Internet. Ethically, plagiarism is false assumption of authorship: the act of taking another person’s language or thought—or language or thought from an anonymous source—and presenting it as your own. Plagiarism or academic dishonesty may take any of the following forms:

- Repeating another person’s sentences or phrases as your own
- Presenting another person’s argument or central ideas as your own
- Letting another person write your paper
- Copying or downloading a paper [or part of a paper] from the Internet
- Misrepresenting in any way how the work was actually done in the submission of a research report
- Purchasing a paper for submission under your own name
- Selling or otherwise distributing any written material with the intent or understanding that another person may submit the work as his or her own
- Cheating on a written examination, such as referring to notes, books, laptop computers [or other electronic devices] without the explicit permission from the instructor
- Submitting work written or prepared for one course to fulfill requirements for a second course without prior permission from the instructors in both courses [regardless of whether or not the courses are taken in the same semester]

These are all acts of plagiarism or academic dishonesty whether they are done intentionally or unintentionally, on any essay, examination, exercise, report [including oral reports], or other type of writing assignment.
The means to prevent plagiarism in essays are: quotation marks around passages taken verbatim from sources; names of sources cited frequently in paraphrases or summaries; and complete documentation of sources in the text of essays and in footnotes, endnotes, or lists of “works cited” or “references,” including language or ideas taken from an Internet source. Students uncertain how to avoid plagiarism should discuss plagiarism with their instructors or with associates in the Center for Writing.

In the Faculty of Humanities and Social Sciences at The Cooper Union, the guidelines for cases of plagiarism, whether intentional or unintentional, are as follows:

The essay or examination will receive a grade of F.

The instructor will inform the Dean of The Faculty of Humanities and Social Sciences, who will report the plagiarism to the appropriate academic Dean in the School in which the student is enrolled.

At the discretion of the instructor, the student may be allowed to rewrite the essay or examination on acknowledgement of plagiarism and instruction on plagiarism in The Center for Writing and Language Arts.

At the discretion of the instructor, the student may be withdrawn immediately from the course and given a grade of F in it. In such cases, further action may be taken, such as probation, suspension, or dismissal.

Every Faculty member is obligated to report all cases of plagiarism to the Dean of the Faculty of Humanities and Social Sciences so that appropriate action may be taken.

Academic Regulations

Credits Unless otherwise noted, HSS courses with the prefixes HUM and SS carry three credits and courses with the prefix HTA carry two credits.

Prerequisites The prerequisites for all courses with the prefixes HUM and SS are HSS1, 2, 3 and 4. HTA 1, 2 and 3 or HTA 101 and 102 are prerequisites for HTA electives. Exceptions may be granted by special permission of the dean.

Grades At the end of every semester, each student receives a grade for his or her semester’s work in each subject. Grades, with their official significance, are as follows: A Outstanding performance B Very good performance C Average performance D Passing but unsatisfactory F Failure to meet minimum requirements I Work of the course not completed and assignment of grade and credit postponed. This designation will be given only in cases of illness (confirmed by authorized physician’s letter) or of other documented extraordinary circumstances beyond the student’s control, and only with the approval of the dean of the Faculty of Humanities and Social Sciences.
The deadline for removal of an I designation will be determined by the instructor, but will not be later than six weeks after the start of the spring semester for students who receive such a grade in the fall semester and not later than two weeks after the start of the fall semester for students who receive such a grade in the spring semester. If the I is not removed within the set time limit, either by completing the work in the subject or by passing a reexamination, the I will automatically become an F unless the dean of the Faculty of Humanities and Social Sciences extends the time or the student withdraws from school.

W Withdrawal (see below)

WU Unauthorized withdrawal (see below)

Indicators of plus (+) and minus (-) are used with the grades A, B, C and D. (The grade of A+ is, however, not given.) These indicators are included in computing grade point averages.

Change of Program

Adding a Course A student is permitted to add a course only during the first week of a semester, during the drop/add period, and only with the adviser’s approval. Adding a course after the drop/add period is not permitted even if the student has been attending the class.

Dropping a Course A student may drop a course during the first week of the semester, during the drop/add period, with the adviser’s approval. A course dropped during the first week of the semester will be deleted from the transcript.

Withdrawing from a Course A student anticipating inability to continue an assigned program should immediately see his or her adviser. After the drop/add period a student may withdraw from a course through the eighth week of the semester. It is the student’s responsibility to obtain the necessary permission from the adviser and to notify the instructor in order to withdraw from a course. A grade of W will appear on the transcript. A student who stops attending a course without permission of the adviser will receive a grade of WU. However, if the student is failing the course at the time of the unauthorized withdrawal, the instructor is free to record a grade of F. A student is not permitted to drop or withdraw from a course if doing so would impede satisfactory progress towards the degree.

Assignments

Students are required to complete all assignments and examinations on time. In the case of schedule conflict or an unavoidable delay in completing an assignment, the student should discuss the problem with his or her instructor. Failure to complete assignments on time may result in an F grade for the course.
Attendance
Students are expected to attend all classes. No more than the equivalent of one week of unexcused absences will be permitted. In the event of absence a student should contact the instructor in advance. Students who miss more than the equivalent of one week of classes in any one course may receive a reduction of the final grade or, at the discretion of the instructor, may be required to withdraw from the course.

Lateness
Students are expected to be punctual. Late students may be refused entry to a class. Chronic, unexcused lateness may result in a reduction of the final grade or in failure.

Academic Integrity
The Faculty of Humanities and Social Sciences expects all students to demonstrate the highest levels of academic integrity. Violations of academic integrity have consequences, including, but not limited to, failure for the course. The Dean of the student’s school will be notified. See more information or a paper copy of the policy may be obtained from the HSS dean’s office.

Student Behavior
Students are expected to conduct themselves in accordance with the guidelines in the Code of Conduct.

Transfer Credit
Transfer credits may be granted for courses with a grade of B or better upon review by the office of the dean of Humanities and Social Sciences to determine that the work accomplished meets the Faculty’s requirements. Students may be required to provide evidence of work completed in the course: syllabi, papers, etc. In rare circumstances, the freshman and sophomore requirements may be waived if an equivalent course of study has been satisfactorily completed elsewhere. Eligible credits should be transferred during a student’s first semester at The Cooper Union. Interested students should make an appointment with the dean or the academic adviser of the Faculty of Humanities and Social Sciences during the first week of classes in the fall semester. [Revised and Approved, March 27, 2018]

Advanced Placement Credit
The Faculty of Humanities and Social Sciences rarely grants AP credit. However, a student who has attained a grade of 5 in an AP course may petition the dean for permission to waive a core requirement and to substitute an appropriate elective course.
COURSES

Core Curriculum

HSS 1 Freshman Seminar
A literature course concentrating on poetry and drama. Selected texts from antiquity and the Renaissance are common to all sections, with works from other genres, periods and cultures chosen by individual instructors. The course develops aesthetic appreciation of literary texts and encourages a range of critical responses. Through close reading, and extended discussion, students learn to articulate their responses in written and spoken form. 3 credits

HSS 3 The Making of Modern Society
A study of the key political, social and intellectual developments of modern Europe in global context. This course is organized chronologically, beginning with the Industrial and French Revolutions. Students develop an understanding of the political grammar and material bases of the present day by exploring the social origins of conservatism, liberalism, feminism, imperialism and totalitarianism. In discussions and in lectures students learn to study and to respond critically in written and spoken form to a variety of historical documents and secondary texts. 3 credits

HUMANITIES

HUM 242 Greek Mythology
The course concentrates not just on the endlessly fascinating stories about the Greek gods and heroes—their loves and their hatreds, their power and their foibles, their benevolence and their brutality, their crimes and their punishments—but also on the contexts in which the myths arose, flourished, and survived the course of millennia. Primarily through the mediating lens of literature, which constitutes the largest surviving body of evidence for Greek mythology, we examine the ways in which the immortals deport themselves and, even more importantly, how they are regarded by their mortal creators, whether with reverence, awe, amusement, or skepticism. The major periods of focus include: [1] the time of Homer and Hesiod; [2] the Archaic period (the Homeric Hymns and the Lyric poets); [3] the high Classical period, the fifth-century B. C. (Greek tragedy and comedy); [4] the late Classical and Hellenistic periods (the mythographers and the philosophers); and [5] the late Roman Republic and the Augustan era (Catullus, Virgil, and Ovid). Later revivals of the Greek myths are addressed in brief, as is the long reach of Greek mythology into contemporary culture. Primary literary, historical, and mythographical texts in translation, supplemented by contemporary visual representations, will serve as the foundation of our exploration. 3 credits
HUM 250 Shakespeare
A course devoted to understanding how the plays work, what characters say and do, the imagery and thematics of Shakespeare’s dramas and the performance practices of the Elizabethan and Jacobean era. Also to be addressed is the cultural milieu of the plays. 3 credits

HUM 309 Art and the Crisis of Modernity
This course will reflect on how various artistic moments of the 20th century both expressed and shaped the world they were in. We will engage with some of the definitions critics and theorists have offered for modernity vs modernism and post-modernity vs post-modernism in culture and in art, including visual arts as well as theater, dance and performance. The course will take as focal points some of the artistic revolutions of the 20th century, particularly around the 1930s, 1960s, and 1990s, and how these revolutions were connected to radical changes in worldview. Students will gain broad familiarity with how to read avant-garde art and performance in relation to its surrounding culture and will research artists and/or movements of their choosing for their final projects. 3 credits

HUM 312 Islamic Aesthetics
‘Islamic’ is not a unitary concept, neither is ‘aesthetics’. In this course, we will explore the fields of knowledge created by medieval and modern deployments of the Arabic adjective ‘ajib (loosely translatable as marvelous, wonderful, astonishing) to describe the nature, production, and performance of texts, objects, events, and places, and their corporeal and spatial affects. Doing so allows us to locate the place of wonder in histories of literature, engineering, and art whilst underlining the permeability between traditions and the radical potential of overcoming expectations of experience and scholarship. Objects we will attend to include the Quran, the Kaaba, luster-painted ceramics, medieval automata and later technologies of enchantment, talismans, flying carpets, and representations of Islam and Muslims in the museum and contemporary American popular culture. 3 credits.

HUM 325 Puppet, Automaton, Robot
They are us, and not us: puppets, automata, and robots are toys or machines that look like us (or parts of us). From antiquity to the present, we have imagined, and then invented, organic and inorganic versions of ourselves, sometimes for entertainment, sometimes to perform essential tasks. This course will draw upon an interdisciplinary range of materials—from philosophy, the history of science, anthropology, and psychoanalysis to literature, popular culture, and art. Instead of separating the “scientific” from the “poetic,” this course will introduce and explore ways in which we can think about what we want from our “artificial life,” and how the boundaries between the living and the non-living require constant rethinking. 3 credits
HUM 352 The Personal Essay
In this course we will study and discuss essays in Philip Lopate, ed., The Art of the Personal Essay, and we will also write our own, on any topics we choose, on all manner of subjects—the daily round, pleasures and pains, taking a walk, solitude, friendship, social issues, in short, our personal responses to any number of topics and situations, enlarging ourselves in the process. 3 credits

HUM 389 Love in Western Art and Literature
This course addresses the representation of love in Western art, with specific attention to the body, gender, and identity. The course will be grounded across two crucial poles: the so-called Greek revolution as a founding moment in the West, with its idea of Eros and the ideally beautiful body, and the rise of the individual in the Renaissance/Baroque period, with its concepts of subjectivity, self and vision (including Shakespeare’s provocative formulation of “a perjured eye.” Readings will include Plato’s Symposium, poetry in the troubadour and Petrarchan traditions, Ficino and the Neoplatonists, Shakespeare, Keats, Shelley, Austen, Foucault, Derrida, Anne Carson and others). 3 credits

HUM 393 Environmental Ethics: Green Growth vs. Degrowth
The call from the IPCC for “rapid, far-reaching and unprecedented changes in all aspects of society” comes at a time when cultural production of utopias and visions of how to remake fossil fuel economies compete with dystopias, denialism, and appeals to realism that insist such change is impracticable. Countering these tendencies with imaginative possibilities requires not only literacy in climate science, but an ability to draw new constellations of ethical, political-economic, and cultural meanings from across divergent mitigation and adaptation pathways. This course asks how to collectively imagine alternative climate futures by bringing together multidisciplinary perspectives on economic growth and its dominant historical and temporal meanings. We will look critically to various philosophical debates, ethical theories, and cultural materials that shed light on the present climate crisis and place it within interrelated contexts of ecology and the biosphere, global capitalism and colonialism, sustainability and “just” transitions, contested narratives of the Anthropocene, eco-apartheid and forced human migration, geoengineering and technology, and social and environmental justice. 3 credits
HUM 99 Independent Study (Humanities)
Only juniors and seniors in good academic standing are eligible for independent study. Independent study may be taken for a maximum of two credits per semester. The student must obtain permission of both the instructor and the dean of the Faculty of Humanities and Social Sciences. The major consideration in approving proposals for independent study is the educational value of the study project within the structure of degree requirements. The Faculty of Humanities and Social Sciences insists on very high standards as a condition for approving any independent study project.

SOCIAL SCIENCES

SS 220 Environmentalism in Urban Context
The recent work of environmental activists and scholars has produced a new urbanism in which the city form and function is intimately connected with natural processes. This rethinking of the city has opened several new possibilities for looking at human-environment interactions. In particular, the everyday environment of the city may be examined as a site for identifying the hidden geographies of raw materials, energy and waste flows. This course looks at three central issues: (1) identification of the material and ecological processes that make possible city form and function possible; (2) interpretation of the city as a constellation of economic institutions and social practices that transform nature over different temporal and spatial scales; and (3) the examination of the environmental and health impacts stemming from a city’s role in production and consumption. Students will work on projects using the principles of ecological design in the redevelopment of urban sites. 3 credits

SS 340 Cause and Effect
Does providing social welfare benefits spoil the poor? Do Nike ads increase their shoes sales? Does having an Amazon Prime membership lead you to buy more from Amazon? Does health insurance improve people’s health? Does hiring a new professor improve the academic performance of Cooper students? Does giving aid to poor countries improve their economic performance? We can get data on all these variables and run regressions and come up with answers, but are they the right answers? Probably not. In all these questions, the direction of the causation can go both ways (For instance, with a Prime membership you are more likely to order from Amazon because it is easier, but also you probably got the Prime membership because you shop online a lot). Also in all these questions, there is a potential that other factors can affect the relationship and in most cases we cannot control for all these factors. Therefore, simply running regressions does not necessarily give us the right answer. This course will help you think about how to answers these cause-and-effect
questions. After taking this course, your attitude towards the world will change. You will doubt many claims that are being thrown at you by news reporters, President Trump (definitely), and even your professors! The course will teach you to think systematically about various types of cause-effect questions and use various types of datasets to try to answer them. You can apply the skills you learn in this course to questions in economics, psychology, business, politics, and even the sciences. 3 credits

SS 345 The Raymond G. Brown Seminar: Varying Topics
A seminar in the social sciences on a topic central to the interests of the late Professor Raymond G. Brown. Recent topics: the credit crisis. 3 credits

SS 347 Macroeconomics
The development of modern macroeconomic theory as it evolves in response to a succession of economic problems and crises. Emphasis on the recent Keynesian/monetarist debates and the role of the Federal Reserve Bank. 3 credits

SS 384 Anthropology and the Other
This course provides an introduction to concepts in social-cultural anthropology. Students will rethink such concepts as culture, race, ethnicity, nationalism, transnationalism, gentrification, power and memory. We will use these concepts to address the questions of human universals and the origins of cultural differences. At the bases of these inquiries will be the question of the “Other.” Who are the “Others” in culture or society? 3 credits

SS 388 Comparative Cities
Cities are a defining feature of humankind as they are the centers of global trade, governance, information, the arts. But are also where people experience life. This course explores various forms of urban organization in the United States, the “First World” and the “Third World” such as New York, Paris, Nanjing (near Shanghai), any town America, Jerusalem. and how they affect immigration, education, cultural experiences and the standard of living. Students are encouraged to contribute their own perspectives. 3 credits

SS 394 American Radicalism
This course will serve as a think tank and workshop. Together, we will ask a number of theoretical questions about what the word “radical” means for those who use it, and how they associate it with something they diagnose as “American.” These will be tangled questions about how radicalism in America traces a difficult conceptual and practical affinity between the genocidal, anti-black, and extractive violence at the root of this country and the radical positions assumed to effect change at this root. By
studying the pamphlets, newsletters, manifestos, oral histories, poetry, and performances of black liberationists, indigenous land defenders, immigrant laborers, abolitionists, trans and queer activists, and feminist collectives, we will trace the problems and promises radicality posed to the intersections of their struggles as Americans and ask of their practices whether or not we can glean from them an evolving interpretation of what radical work entails. The hope of this course is to use these investigations to interface more critically with our own non-academic practices. The expectation is that we will bring the things that we think about outside of the classroom—our art and technical practices, social life, and more—to bear on what we will study together. What do these concepts have to do with what we already do? We will use the city as a laboratory for our study when we can. Throughout the course, our most important question will be: How do we do differently in the wake of a study on American radicalism?? 3 credits

SS 99 Independent Study (Social Sciences)
Only juniors and seniors in good academic standing are eligible for independent study. Independent study may be taken for a maximum of two credits per semester. The student must obtain permission of both the instructor and the dean of the Faculty of Humanities and Social Sciences. The major consideration in approving proposals for independent study is the educational value of the study project within the structure of degree requirements. The Faculty of Humanities and Social Sciences insists on very high standards as a condition for approving any independent study project.

HISTORY AND THEORY OF ART

Core

HTA 101 Modern to Contemporary: An Introduction to Art History
This two-semester art history core course, developed as part of the Foundation year for students in the School of Art but open to all students, is organized around a set of themes running through the history of modernity from the 18th century to the present. Within specific themes, significant works, figures and movements in art/design will be presented chronologically. Students will be able to identify and critically evaluate significant works, figures and movements in art/design in the modern period; be able to describe the main social and political contexts for the changes in art/design over the last two hundred years; and engage, in writing and class discussion, with theoretical perspectives on art/design production. The course will involve museum visits. Grading will be based on class participation, papers, and exams. 2 credits each semester

209
Electives

HTA 215 Nonconforming Before Genderqueer
In their 2018 article, “Trans, Time, and History,” scholars Leah Devun and Zeb Tortorici investigate the possibilities of using transgender as a lens to write history, what they call “trans before trans.” Taking their inquiry as a starting point for our class, this course will investigate how art and literature have been used to imagine alternatives to the gender binary, focusing on the period between 1750 and 1950 in Europe and America. We will examine many different depictions of androgyny, examining its various functions as a spiritual ideal, as a critique of the gender binary, and as a way to express homoerotic desire. After briefly considering how the androgyné—a nonbinary gender—was imagined in the Middle Ages and Renaissance, we will examine writing by the eighteenth-century Swedish mystic Emanuel Swedenborg and the long influence of his thinking on how Europeans and Americans understood the idea of an androgyné. Our inquiry encompasses study of Black trans history in the fugitive slave narrative of Harriet Jacobs and in the androgynous sculptures of Harlem Renaissance artist Richmond Barthé. We will also study the lives and work of gender-nonconforming artists such as writer Rachilde and photographer Claude Cahun. 2 credits

HTA 221 Buddhist Art: Origins to Modernity
As a part of the ongoing discourse on the tripartite interrelation among art, religion and modernity, this class investigates “Buddhist art,” the visual culture of one of the world religions, rooted in the premodern societies of India, Central, South East and East Asia and Tibet, from which its distinctive material forms, visual principles and ritual practices developed. More recently, the presence of Asian Buddhist material/visual cultures has asserted itself anew through transnational exchanges and confrontations, particularly between Asia and the modern and contemporary West. This course attempts to historicize this phenomenon by taking a macro approach to Buddhist art (without sacrificing specifics related to individual cases) by investigating two possible constituents of modern/contemporary Buddhist art: its core historical principles carried over from its origins, which have been considered “timeless,” and its uniquely “timely” complication of or deviation from its original systems.

We will spend half of the course studying some original principles of historical Buddhist art in areas such as visuality, representation, copy, agency, function and performativity, while quickly tracing the geo-historical spread of the religion throughout Asia over a period of more than 2,400 years. In this section, we will visit selected works and sites that represent some typologies of premodern Buddhist art, such as relics, icons, mandala, pagoda, gardens and “Zen art,” and examine them in
"context," i.e., concerning their relations to the ritualistic/symbolic practices and fundamental philosophy of the religion. The latter half of the class will explore the issue of collisions in modernity between two claims: an insistence on the immutability and authenticity of persistent premodern systems of Buddhist art and experimentations reflecting the ever changing globalizing identities of the religion and regions in Asia, corresponding to recent social, political and cultural landscapes, including museum displays, temple politics, Orientalizing commodification and appropriation by avant-garde artists. 2 credits

HTA 273 History of Photography
Writing by the critics, historians and photographers that have influenced creation and reception of photography throughout its history. Issues include definitions and redefinitions of art, documentary debates and revisionist canons and histories. 2 credits

HTA 278 Modernism in Latin America
This course examines the emergence and development of Latin American modernisms in their so-called first and second waves. The first one, which unfolded from the 1920s to the 1940s in Brazil, Mexico and Cuba, witnessed the artists' combination of imported European avant-garde tendencies—such as post-impressionism and Cubism—with local motifs to produce an art that could reflect a national identity. The second wave pertains to the post World War II raise of abstract tendencies in South America, specifically, concrete abstraction in Argentina and Brazil, and op and kinetic art in Venezuela. Artistic modernisms in the region will be studied in connection with the political and cultural context in Latin American countries, specifically, the process of nation-state building, the rise of populist ideologies, and the incidence of developmentalism in the Southern Cone during the 1950s and 1960s. We will analyze a range of artists, such as Tarsila do Amaral, Candido Portinari, Diego Rivera, David Alfaro Siqueiros, Frida Kahlo, Wifredo Lam, Mario Carreño, Pedro Figari, group MADÍ, Lygia Clark, Helio Oiticica, Carlos Cruz-Diez and Jesús Rafael Soto. Topics might include: the strategies of modernity in Latin America, the new concept of "inverted utopia," the role of the avant-garde group manifestos, the post-colonial, and the meaning of abstraction within a turbulent political milieu. We discuss crucial concepts that define cultural modernism in Latin America; among them, identity, indigenismo, costumbrismo, transculturation, syncretism, hybridization, and race politics. 2 credits
HTA 281 Ancient Mediterranean World
This course is intended to address selected topics concerning the reciprocal relationships among the fascinating and diverse civilizations of the ancient Mediterranean littoral and their neighbors to the East. The primary focus this semester will be on the Bronze Age— the "Age of Heroes," to the beginning of the Classical era, and the setting of the Homeric epics, the Iliad and the Odyssey—with special emphasis on the interrelationships between Egypt, the Near East and the Greek Aegean during the time period ca. 3000–1100 B. C. We will look at the art, architecture, archaeology and a sampling of the literature of the periods and places under consideration. 2 credits

HTA 285 Single-Work Seminar
A seminar devoted entirely to a single monument or work of art that had a particularly profound and wide resonance in the socio-political, economic, and cultural milieu in which it was created and whose range of influence extended well beyond its historical time frame. The focused nature of the course material allows for both a breadth and a depth of analysis to a greater degree than is possible in other elective art history courses. Past topics have included Duccio’s "Maesta." 2 credits

Fall 2022: Chartres Cathedral. This course surveys a single building in medieval France, Chartres Cathedral and it will focus on several themes that will contextualize the building in the city, its role with the community, the political powers invested in it and its more general historical and architectural surroundings. Once we analyze the master plan of the church with its sculpture work and stained-glass window narratives, we will explore the social resonance of this Gothic building, as a representation of spiritual beliefs, as a tool of political persuasion and the early creation of the cult of the Virgin Mary, which spread quickly through Europe.

HTA 305 Performativity
Performativity is the capacity of speech, utterance, gesture, and language to impact or create the world. In this course, students will explore the relevance of speech acts to social norms and identity, as well as creative forms of self- and collective fashioning and redress. This course moves from debates around the performative—the study of words which do things—to accounts of gender, race, and sexuality which emphasize their constructedness and thus, their alterability. This course also prioritizes performance art as one among many answers to the problem of embodiment and experiment. Together, we will explore key texts and performances within the field of performance studies to address the generative exchange between art and critical theory. Key words or sites include the relationship of speech to deed; discourse to materiality; inscription to violence; and embodiment to history. Students will have the possibility of exploring their own performance practice in a final project. 2 credits
HTA 313 **Seminar in Art History**
A seminar based on a special topic in the study of Art History. The seminar may be repeated for credit with the permission of the dean of the Faculty of Humanities and Social Sciences.

Fall 2022: G1 Seminar: Digital Art History. This course analyzes digital art history with origins in multiple art fields such as Conceptual art, Fluxus, as well as the fields of cybernetics, computation, and engineering. From conceptual art to artificial intelligence, the course surveys numerous aspects of digital art such as innovation in technology throughout the 1950s to the present and artists’ responses and negotiations to these new technologies. Many exhibitions throughout the 1960s to today reflect this ongoing conversation between art and technology. We will look at not just the theoretical and historical texts, but also a survey of artworks, artists, and exhibitions to better understand how both inform each other. Some fields include net.art, surveillance, bioart, video games, and tactical media. Some topics will include feminism, race, and sexuality and we will keep in mind also the male and western focused digital art history but also how recent artists respond to these histories. The course asks the following questions: Who gets to participate in these technological innovations? How does technology spark innovation and progress? How is technology fraught with bias that can lead to the oppression of some individuals over others? What is the future of digital technologies and art? 2 credits

HTA 314 **Art Exchange Across National Boundaries**
The course focuses on the exportation and promotion of contemporary art across national boundaries, from the mid-20th century to the present. Exhibitions, publications, and artists’ global mobility can function as vehicles of cultural dialogue and mutual understanding, but also as means of propaganda or cultural imperialism. We will study the exportation of art as a translation process and we will raise questions about the transformative effect of this process on both ends of the dialogue. 2 credits

HTA 324 **Museum as Frame: Art in New York**
Through class meetings and museum visits we will investigate the idea of the museum, its history, cultural significance, meaning and societal influence. In particular, we will consider how the museum experience affects the attitudes and assumptions of museum visitors. We will explore the intellectual underpinnings of the modern museum since the Enlightenment, with special attention to issues of nationalism and eurocentrism; the complexities of museum sponsorship (public, private, and corporate), and how they shape cultural presentation; and the emergence, since the 1960s, of community-oriented museums alongside the growing importance in society of multi-culturalism and ethnic identity. We will also consider standard art-historical issues of style and society as they relate to the various artworks we see. 2 credits
ADMINISTRATION, FACULTY
AND STAFF

Administration
Nada Ayad
Associate Dean
Cynthia Hartling
Administrative Associate to the Dean of the Faculty of Humanities and Social Sciences
John Lundberg
Associate Director, Center for Writing
Kit Nicholls
Director of the Center for Writing

Full-Time Faculty
Loujaina Abdelwahed
Assistant Professor, Economics
Raffaele Bedarida
Assistant Professor, Art History
William Germano
Professor
Anne Griffin
Professor
Atina Grossmann
Professor
Sohnya Sayres
Associate Professor
Mary Stieber
Professor
Brian Swann
Professor

Adjunct and Visiting Faculty
Esther Adaire
Adjunct Instructor
Emily Barth
Adjunct Assistant Professor
Edner Bataille
Adjunct Instructor
Ágnes Berecz
Adjunct Assistant Professor
Celia Bergoffen
Adjunct Assistant Professor
Matthew Bower
Adjunct Assistant Professor
Viviana Bucarelli
Adjunct Instructor
Peter Buckley
Adjunct Associate Professor
James Colby Chamberlain
Adjunct Assistant Professor
Henry Colburn
Adjunct Assistant Professor
Greg D’Onofrio
Adjunct Instructor
Jessica Denzer
Adjunct Instructor
Madeleine Ellenbein
Adjunct Assistant Professor
Elisabeth Fink
Adjunct Assistant Professor
Paul Franz
Adjunct Assistant Professor
Kay Gabriel
Adjunct Assistant Professor
David Gersten
Distinguished Professor
Julian Gonzalez De Leon
Heilblum
Adjunct Instructor
Anne Hewitt
Adjunct Assistant Professor
Michelle Hobart
Adjunct Professor
Mohamad J. Hodeib
Adjunct Instructor
Stéphanie Jeanjean
Adjunct Associate Professor
Mia Kang
Adjunct Instructor
Alexander Langstaff
Adjunct Instructor
Fuchiawen Lien
Adjunct Assistant Professor
Sarah Lowengard
Adjunct Associate Professor
Stephanie Makowski
Adjunct Instructor
Melanie Marino
Adjunct Assistant Professor
Tara Menon
Adjunct Instructor
Iris Moon
Adjunct Assistant Professor
Dina Odnopozova
Adjunct Assistant Professor
Rose Oluronke Ojo-Ajayi
Adjunct Assistant Professor
Mitra Panahipour
Adjunct Assistant Professor
Ninad Pandit
Visiting Professor II
Kathleen Pullum
Adjunct Assistant Professor
Harold Ramdass
Adjunct Associate Professor
Sarah Richter
Adjunct Instructor
Ricardo Rivera
Adjunct Instructor
John Sarich
Adjunct Professor
Gail Satler
Adjunct Professor
Avra Spector
Adjunct Instructor
Emily L. Spratt
Adjunct Assistant Professor
Evan Spritzer
Adjunct Assistant Professor
Nicholas Tampio
Adjunct Associate Professor
Yasuko Tsuchikane
Adjunct Associate Professor
Alexander Verdolini
Adjunct Assistant Professor
Neena Verma
Adjunct Instructor
Writing Associate
Buck Wanner
Adjunct Assistant Professor
Writing Associate
Elizabeth Weckhurst
Adjunct Assistant Professor
Andrew Weinstein
Adjunct Professor
James Wylie
Adjunct Assistant Professor
Paul C. Zimmerman
Adjunct Assistant Professor
Guido Zuliani
Distinguished Professor
Adjunct
Center for Writing Associates

Alexis Almeida
Writing Associate
Julia Bosson
Writing Associate
Koan Anne Brink
Writing Associate
William Camponovo
Writing Associate
Stephen Higa
Writing Associate
Marie Hubbard
Writing Associate
Alice Jones-Nelson
Adjunct Assistant Professor
Writing Associate
Christine Malvasi
Writing Associate
Kate McIntyre
Writing Associate
Pam Newton
Coordinator of the Writing Fellows Program
Major Fellowship and Scholarship Advisor
Adjunct Instructor
Phil Polefrone
Adjunct Instructor
Writing Associate
Liza St. James
Writing Associate
Kent Szlauderbach
Writing Associate
Stella Tan-Torres
Writing Associates
Augusta X. Thomson
Writing Associate

Administration and Faculty Emeriti

Leo S. Kaplan
Professor Emeritus
Fred Siegel
Professor Emeritus of History
David Weir
Professor Emeritus of Comparative Literature
GENERAL POLICIES

The Cooper Union reserves the right to change or amend its regulations, curricula, fees and admission procedures without prior notice.

Registration Unless permitted by the dean of admissions and records to do otherwise, all students must register during one of the scheduled dates and pay fees and laboratory deposits. Students who fail to meet all financial obligations to The Cooper Union will not be permitted to register. No student will be admitted to classes without evidence of completion of registration. Students who fail to register will be dropped from the rolls.

Attendance

School of Architecture and School of Art Classes and studios are scheduled Monday through Friday between 9 am and 10 pm. Studio facilities usually are available to students on Saturdays and Sundays throughout the academic year.

Each student is required to be punctual and to attend each scheduled class. In the case of unavoidable absence, the student should, on his or her return, report to the instructor to explain the absence and inquire about making up the lost work. All architecture students are provided with studio space and are expected to work in the studio during regular building hours.

School of Engineering Each student is expected to attend all classes and to satisfy other requirements in each course in such ways as the instructor may prescribe. If a student is absent an excessive number of times, he/she may, at the discretion of the instructor and with the approval of the dean, be asked to withdraw from the course.

After each absence, it is the student’s responsibility to consult with the instructor, without delay, to determine the nature of the makeup work required.

Faculty of Humanities and Social Sciences Each student is expected to attend all classes. No more than two unexcused absences will be permitted during any given semester. In the case of an unavoidable absence, the student should, on his or her return, report to the instructor to explain the absence and inquire about making up the lost work. Students who are absent three or more times may receive a reduction of the final grade or, at the discretion of the instructor, be asked to withdraw from the course.
Calendar Changes The academic year at The Cooper Union has fall and spring semesters and runs from September to May. In order to serve the student body most effectively during the academic year, The Cooper Union cannot modify its calendar or procedures to meet special demands of students.

Academic Standards and Regulations For specific academic standards and regulations of each school, consult the appropriate sections of this catalog.

Dismissal The Cooper Union reserves the right at any time to dismiss a student whose conduct, attendance or academic standing is, in its judgment, unsatisfactory and to grant or withhold credits, certificates, degrees or diplomas. Disciplinary authority is vested in the president’s office.

Obligations Students will be held accountable for all individual obligations, financial and other, entered into with The Cooper Union. Students who fail to meet all financial obligations to The Cooper Union will not be permitted to register. No student will be included in the graduating class unless all obligations have been accounted for prior to graduation. The Cooper Union will withhold transcripts and other information about a student who has not met financial obligations.

Transcripts Official transcripts of a student’s scholastic record are issued directly to officials of other institutions or examining boards, upon request to the dean of admissions and records and registrar. Each copy of a transcript will cost $5 (there is no charge to currently enrolled students). Requests should include the name and complete address of the person who is to receive the transcript and must include the signature of the student or alumnus/a.

Transcripts are not issued for students during the period of time in which grades are being recorded. Transcripts of student grades are issued to inquiring employers and agencies if a student notifies the dean of admissions and records and Registrar in writing, authorizing the distribution of the transcript.

Official transcripts are issued directly to students or to alumni in a sealed envelope.

Current students have access to their transcript and registration information on the portal to the school database, once they receive a password and a login at the Computer Center.

Student Property The Cooper Union assumes no responsibility for loss of or damage to the work or property of students.
Notification of FERPA Rights

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. These rights include: 1) The right to inspect and review the student’s education records within 45 days of the day The Cooper Union receives a request for access. Students should submit to the Office of Admissions and Records written requests that identify the record(s) they wish to inspect. The Office of Admissions and Records official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the Office of Admissions and Records, the office shall advise the student of the correct official to whom the request should be addressed. 2) The right to request the amendment of the student’s education records that the student believes is inaccurate. Students may ask the Office of Admissions and Records to amend a record that they believe is inaccurate. They should write the Registrar and clearly identify the part of the record they want changed and specify why it is inaccurate. If the Registrar decides not to amend the record as requested by the student, the Registrar will notify the student of the decision and advise the student of his or her right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing. 3) The right to consent to disclosure of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent. One exception, which permits disclosure without consent, is disclosure to school officials with legitimate educational interests. A school official is a person employed by The Cooper Union in an administrative, supervisory, academic, research or support staff position; a person or company with whom The Cooper Union contracted (such as attorney, auditor or collection agent); a person serving on the Board of Trustees or a student serving on an official committee (such as a disciplinary or grievance committee) or assisting another school official in performing his or her tasks. A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility. 4) The right to file a complaint with the U.S. Department of Education concerning alleged failures by The Cooper Union to comply with the requirements of FERPA. The name and address of the Office that administers FERPA is: Family Policy Compliance Office, U.S. Department of Education; 400 Maryland Avenue, SW; Washington, DC 20202-5901.
Program Changes During the first several days of a semester, courses may be added to or dropped from a student’s program without penalty or fee (program adjustment). Adding of courses after the posted date is not permitted. Students who wish to change their academic programs should consult with appropriate deans. All program changes must be reported by the student to the dean of admissions and records. A $25 fee will be charged for dropping courses after the drop/add period.

Transfer of Academic Credit Every effort is made to provide admitted students with a preliminary evaluation of their transfer credit. School-wide policies dictate that a grade of B or better must be earned to be eligible for transfer of credit.

To seek credit or if there is a question about whether or not a class taken at a previous institution is eligible for transfer of credit please contact the department chairperson or respective dean of the school to which you are interested in obtaining credit.

Each department/school reserves the right to ask for additional information, i.e., coursework, syllabus, portfolio, etc., before granting transfer credit.

Currently enrolled students must always contact the appropriate department chairperson and dean of school at The Cooper Union prior to registering for classes at other colleges or universities should there be interest in obtaining transfer credit at The Cooper Union. Explicit permission must be granted by the department chairperson and dean of school before registering at another college or university to ensure that the course will be transferable.

Please see pages 37, 53, 76 and 118 for more detailed information about transfer credit.

Health

The Cooper Union requires a report of a physical examination from a licensed physician of the student’s choice. The Cooper Union will provide its own medical form for this purpose and the form must be completed in its entirety. This report must include a record of vaccinations and immunizations. In addition, New York state law requires that students respond to a query concerning whether or not they have been immunized against meningitis.

The college reserves the right to exclude from attendance at any time—temporarily or permanently—any student whose physical or emotional condition is such that, in the opinion of an appropriate medical officer, attendance would endanger the health or welfare of other students and/or members of the Cooper Union community or otherwise disrupt the educational environment. A student whose attendance at the Cooper Union has been interrupted by a dismissal or extended leave of absence—for any reason—needs to submit new medical records before he or she resumes atten-
dance. Likewise, students continuing on to the graduate program at Cooper Union must submit new medical forms at the time of beginning graduate study.

Vaccination and Immunization New York State law requires that all undergraduate and graduate students be immunized against measles, mumps and rubella. The law applies to all students born on or after January 1, 1957.

Proof of immunity consists of:

- Measles: Two doses of live measles vaccine administered after 12 months of age, physician documentation of measles disease or a blood test showing immunity. The exact date of these shots in month-day-year format must be written on the form and certified by the physician.

- Mumps: One dose of live mumps vaccine administered after 12 months of age, physician documentation of mumps disease or a blood test showing immunity. The New York State Assembly is currently considering a proposal to require two mumps shots.

- Rubella: One dose of live rubella vaccine administered after 12 months of age or a blood test showing immunity.

Proof of immunity, including dates of immunizations, must be filed with the Office of Student Services prior to each student’s initial registration at The Cooper Union. Students who claim a religious objection to being immunized must send a signed letter attesting to this fact to the dean of students by July 15.

Students may not attend any events on campus, including classes and orientation programs, without having submitted these forms.

Meningitis Status New York State Public Health Law Section 2167 requires colleges to distribute information about meningococcal disease and vaccination to all enrolled students.

Meningitis is rare; however, cases of meningitis among young adults have more than doubled since 1991. When the disease strikes, its flu-like symptoms make diagnosis difficult. If not treated early, meningitis can lead to swelling of the fluid surrounding the brain and spinal seizures, limb amputation and even death.

The Cooper Union is required to maintain a record of the following for each student:

- A response to the receipt of meningococcal disease and vaccine information signed by the student or the student’s parent or guardian, AND EITHER

- A record of meningococcal meningitis immunization within the past 10 years, OR

- An acknowledgement of meningococcal disease risks and refusal of meningococcal meningitis immunization signed by the student or the student’s parent.
Students are asked to provide this information by July 15 of the year they enter The Cooper Union.

Health Insurance The Cooper Union requires all students to submit proof that they have health insurance prior to registration. Students who fail to supply the information requested on the Student Accident and Sickness Insurance Enrollment/Waiver Form before August 15 will billed for the Cooper Union Student Accident and Sickness Insurance at a cost of $1,200 for the 2015–16 academic year.

Leave of Absence

Discretionary Leave of Absence Students who have completed at least one year of study may request an interruption of their studies for a Discretionary Leave of Absence. The request must be submitted, in writing, to the student’s academic dean or associate dean. A Discretionary Leave of Absence for up to one year (2 semesters) with an automatic guarantee of reinstatement may be granted to students in good academic standing who are making satisfactory progress toward their degree. A request for a Discretionary Leave beginning in the fall semester must be made before April 15th. A request for a Discretionary Leave beginning in the spring semester must be made before November 15th. Approval for a Discretionary Leave is neither automatic nor guaranteed. Before taking such a leave, all financial obligations to the Cooper Union must be satisfied. Students on academic leave are considered inactive and do not have access to the facilities of The Cooper Union.

Returning from a Discretionary Leave Students on a Discretionary Leave must notify, in writing, their academic dean of their intention to return at least four (4) weeks prior to the registration period for the semester of their intended return. The dean must notify the registrar to reactivate the student record.

Medical Leave of Absence A student who must interrupt his/her studies for medical reasons must submit a written request for a Medical Leave of Absence to his/her academic dean along with supporting documentation, which must include a letter from the treating health care provider.

Returning from Medical Leave A student on a Medical Leave of Absence must notify his/her academic dean of his/her intention to return at least eight (8) weeks prior to the semester of the student’s intended return. The student must also provide a letter from his/her treating health care provider to the Dean of Students that he/she is ready and able to return to school. The academic dean must notify the registrar to reactivate the student record.
Compulsory Medical Leave of Absence

The Cooper Union seeks to foster a safe and peaceful campus environment (including, but not limited to its classrooms, laboratories, studios, shops, and dormitories) that nurtures its students’ well-being and allows them to focus on their studies.

The professional degree programs at The Cooper Union are exceptionally rigorous courses of study that require a student’s full commitment of time and effort and involve collaborative work in shared studios and laboratories. Additionally, in light of the highly specialized technical skills needed to run equipment in its shops and laboratories, The Cooper Union has the highest concern for safety on its premises and has appointed staff and faculty to supervise these facilities. Such concerns are carefully balanced with the institution’s historic commitment to student rights.

If a staff or faculty member notifies the student’s academic dean that a student’s conduct, actions or statements indicate that the student: (i) poses a threat of harm to the safety of others (either directly or through an inability to safely perform any necessary functions as a student); and/or (ii) is engaged (or may engage) in behavior or conduct that is disrupting the academic experience of others on campus, the dean will promptly assess such concerns and determine whether there is a problem, the nature, duration and severity of the problem, and the probability that such harm or disruption may occur. The academic dean or the dean of students will promptly meet with the student to analyze the situation. If a medical situation is involved, the student may be asked to provide medical information from a healthcare provider in order to clarify the situation as necessary. Considering all the information, the dean will determine if a problem exists and, if so, whether a reasonable modification of policies, practices or procedures or the provision of auxiliary aids or services can appropriately mitigate the problem. If so, following such an accommodation/modification, the student will be permitted to continue with his/her studies. At any point during the investigative process, the student will have the right to take voluntary medical leave of absence following the procedure stated above.

If an accommodation/modification cannot sufficiently alleviate the risk/disruption to allow the student to remain actively enrolled, and the student is not able or willing to take a voluntary medical leave of absence, the academic dean may recommend to the Academic Leadership Team that the student be placed on compulsory medical leave of absence. The student will be sent a letter notifying him or her of the dean’s recommendation for a compulsory medical leave of absence, the basis for such a recommendation, and inviting the student to a hearing on this matter. This hearing—granting the student the opportunity to respond to this recommendation—will be conducted by one member of the Academic Leadership team and one other officer of The Cooper Union and will be held no sooner than five (5) days after the letter is sent to the student. If necessary, the student may request accommodations (e.g.,
modifications to policies, practices, or procedures; the need for an auxiliary aid or service) to participate in the hearing. At this hearing, the student may submit additional medical records and/or other appropriate information/documentation. The hearing officers will decide whether to accept the recommendation, reject it, or modify it and will inform the student within 24 hours of their decision, in writing. The hearing will be digitally recorded.

A student may be temporarily suspended from the institution prior to this hearing.

A student may be placed on compulsory medical leave for either a semester or a year, depending on the nature of the circumstances of the leave, submitted medical documentation, and the student’s academic program. Students placed on compulsory medical leave will be asked to provide an evaluation from a physician of Cooper Union’s choosing attesting to their medical readiness to resume their studies, with or without accommodation.

Appeal Process A student who has been the subject of a hearing under these procedures may appeal the decision of the hearing committee within 3 business days by writing a letter to the vice president for finance, administration & treasurer/equal opportunity officer or academic dean setting forth the reasons why the appeal is being made. The vice president will convene an Appeal Board within 3 days of receiving the appeal letter. The board will consist of the vice president or her designee and one member of the Presidential Leadership Team who was not involved in any way in the prior hearing. The Appeal Board shall limit its review to these issues:

- does the record show that the party had a full and fair opportunity to present his or her case?
- does the solution imposed achieve the proper balance between maintaining a safe and peaceful campus environment and respecting the rights of the student to continue his or her education?

After considering the record and the letter of appeal, the Appeal Board may:

- Accept the decision of the hearing committee;
- Order a new hearing in keeping with the Appeal Board’s instructions;
- Reverse the hearing committee’s decision in its entirety;
- Accept the hearing committee’s decision but modify the solution.

If the Appeal Board accepts the decision of the hearing committee, whether or not it modifies the terms of the compulsory medical leave, the matter shall be deemed final.
Policy on Copyrighted Material

Copyright Infringement The Cooper Union is obligated by federal law to inform its students of its policies and sanctions related to copyright infringement. Unauthorized distribution of copyrighted material, including unauthorized peer-to-peer file sharing (e.g., using BitTorrent to obtain/distribute music or movies) may subject students to civil and criminal liability, sanctions arising from a violation of The Cooper Union’s Code of Fair Practice, and loss of Internet services provided by the Cooper Union IT Department.

The basics of copyright law may be found at numerous websites, including those of many universities whose policies relating to copyright infringement generally and file sharing in particular are similar to The Cooper Union’s policy:

uspto.gov/web/offices/dcom/olia/copyright/copyrightrefresher.htm
deanofstudents.utexas.edu/lss/spot_illegalfilesharing.php
copyright.gov/title17/

Fair Use A limitation on copyright protection is known as “fair use.” Permission of a copyright holder is not required (i.e., there is no copyright infringement) where the use is for noncommercial activities such as teaching (including multiple copies for classroom use), scholarship, research, studio work, criticism, comment, or news reporting. [Note that while “teaching” activities may qualify as fair use, the doctrine of fair use has a requirement relating to the “amount and substantiality” of the copyrighted work that does not permit, for example, the copying and distribution of an entire copyrighted textbook to a class.]

The routine use of file sharing programs to obtain music, movies and software does not constitute fair use. For more information on fair use see: copyright.gov/ffl/fl102.html

Code of Conduct In addition to the sanctions for copyright infringement provided by federal law, The Cooper Union’s Code of Conduct explicitly prohibits:

• “illegally duplicating copyrighted or licensed software” (Category B offense).
• “any unauthorized use of network and/or computer hardware” (Category B offense).

A violation of copyright law might also be viewed as an act of academic dishonesty or fraud, which are Category A offenses and punishable by suspension or dismissal.
IT Department Responsibilities In order to receive a Cooper Union computer account, a student is required to sign a document provided by the IT Department in which they promise to respect the rights of copyright holders. While the IT Department does not monitor its networks for content, it may monitor the volume of use (bandwidth) for any computer on its networks. A student who is using excessive bandwidth may have his or her Internet access reduced or terminated.

Students should be aware that representatives of copyright holders routinely search the Internet for infringers, resulting in lawsuits being filed against students. Such lawsuits may be very expensive to settle. Copyright holders have frequently filed notices of copyright violations directly with The Cooper Union, which requires the school to take immediate action to eliminate infringement.

The IT Department advises against installing and/or leaving file sharing programs on any computer attached to a Cooper Union network. While there are legitimate reasons for using such programs (e.g., the distribution of non-copyrighted software), by operating “silently” they may put the owner of the computer in the position of distributing infringing files, and being liable for such distribution, even though he or she has no intent of doing so.

Policy on Religious Observances No student shall be refused admission to or be expelled from The Cooper Union solely because he/she is unable to participate in any examination, study or work requirement because of religious observances and practices. It is the intent of The Cooper Union to accommodate reasonably individual student and faculty religious obligations and practices without penalty, based on good faith effort and due notice to those relevantly concerned of the anticipated religious observance date. There is a mutual obligation of students and faculty to provide prior notice to each other of anticipated absences. Students absent because of religious observances and practices will be given the opportunity to make up any examination, study or work requirement missed without penalty.

Bicycle Policy The Cooper Union has 24 indoor bicycle parking spaces (for non-folding bicycles) for faculty, staff and students of the Cooper Union only. The parking facility is located in the lower level of the Foundation building. Access to the parking facility is as follows:

- To determine if there are spaces available, check the sign at the entrance to the Foundation Building. The security desk in the Foundation Building will have serial-numbered tags equal to the number of spaces available in the parking facility at that time.
- To obtain a tag you must show valid Cooper ID and sign in.
The Cooper Union encourages the use of the bicycle as a viable mode of transportation to and from campus. To ensure the safety of our faculty, students and staff, and taking into account the college’s space constraints, the following bicycle policy was implemented September 1, 2009.

Bicycles that do not fold are not permitted in the Foundation Building, 41 Cooper Square, the Residence Hall or 30 Cooper Square. Nor are loose bicycle tires permitted in these buildings. Folding bicycles, which must be covered prior to entering the building, may be stored in offices or lockers. Folding bicycles stored in lockers must fit within the locker such that locker doors remain closed. Bicycles found in public spaces such as studios, hallways, laboratories and lounges will be removed. Violators of this policy will be subject to disciplinary action and will be responsible for any assessed damages. Violations by persons represented by a labor organization will be handled in a manner consistent with the applicable collective bargaining agreement.

Bicycles may be parked outdoors only in those areas which have been specifically designated for this purpose. A bicycle parking area is indicated by the presence of bicycle racks. Bicycles may not be parked in a way which would impede access to a building entrance or exit. No bicycle may be parked at any entrance, exit or access ramp to any Cooper Union owned building.
In the event that bicycles are stolen on campus, members of the Cooper Union community should report the incident to the Office of Buildings and Grounds. In addition, members of the Cooper Union community are also encouraged to report the incident to the local Police Precinct (212.477.7811). The Cooper Union is not responsible for lost or stolen personal belongings, including bicycles.

Policy on Smoking In accordance with the New York City Clean Indoor Act, as amended, and New York State Public Health Law Article 13-E, the following Smoking Policy is effective at The Cooper Union September 1, 2009:

Smoking is prohibited at all times in all college owned buildings, including but not limited to auditoriums, classrooms, laboratories, offices and public areas and the Student Residence Hall. Furthermore, smoking is not permitted within 25 feet from a Cooper Union facility entrance.

This smoking policy is intended to keep the air clear of smoke for those within our facilities and for those entering and leaving Cooper Union owned buildings.

The Cooper Union requests and expects your cooperation and assistance in the implementation and enforcement of the smoking prohibition. Those who do not comply with this policy will be subject to disciplinary action up to and including fines and/or expulsion from the college, or termination of employment. Complaints against persons represented by a labor organization will be handled in a manner that is consistent with the applicable collective bargaining unit.

Conflicts related to smoking among employees should be brought to the attention of appropriate supervisory personnel and, if necessary, referred to the equal opportunity officer. To report an incident concerning violation of this policy, please send a written report to the director of facilities management.

Students alleged to be in violation of the policy are subject to disciplinary action through the appropriate student conduct jurisdiction.

In accordance with the law, any individual can voice objections to smoke that gathers in any smoke-free area without fear of retaliation.

New York State Law regarding alcohol

New York State has very strict laws about alcohol.

Section 65 of the Alcohol Beverage Control Law states:

No person shall sell, deliver or give away or cause or permit to be sold, delivered, or given away any alcoholic beverages to:

1. Any person, actually or apparently, under the age of twenty-one years;
2. Any visibly intoxicated person;
3. Any habitual drunk.
In addition, legislation enacted in November of 1991 specifies that a U.S. or Canadian drivers’ license or non-driver identification card, a valid passport, or an identification card issued by the United States Armed Forces must be used as written evidence of age for the purchase of alcoholic beverages. New York State law also prohibits the possession of alcoholic beverages with the intent to consume by a minor and makes it a crime to produce fraudulent proof of age. Students in possession of a phony identification card should know that the antiterrorism measures put in place by the New York City police department have improved the ability to detect fake IDs and have resulted in several arrests.

New York State imposes liability on any person who serves alcohol illegally to a minor. This means if someone serves a minor alcohol, the person serving the alcohol can be sued for damages by anyone harmed by that minor, including the parents or family of the minor if the minor himself or herself suffers harm.

Procedures for Use in Serving Alcoholic Beverages at Student Events Approved by The Joint Activities Committee:
1. The serving of hard liquor is not permitted at any college event involving students.
2. Student groups must hire a licensed caterer for the serving of wine and beer at student events. Such serving will be limited to those persons at the legal age in New York State of 21 years. To facilitate quick identification of students of legal age at the point of service, a process of carding that requires the presentation of Cooper Union ID and an ID that complies with the 1991 New York State law will be carried out by a security guard available solely for that purpose and paid for by the sponsoring student club through allocated JAC funds. All student events must be approved by JAC. There are no exceptions to this requirement.
3. Sponsors of JAC-approved events have primary responsibility for ensuring that only those of legal drinking age are served alcohol. Sponsors must include at least two persons 21 years of age or older. Such events must include the serving of food, in sufficient amount for the numbers attending; and the displaying of a variety of non-alcoholic beverages must be featured as prominently as alcoholic beverages and dispensed in the same area.
4. The promotion of alcohol in advertisements for events is not permitted. Other aspects of the event should be emphasized—such as entertainment, availability of food, etc.
5. The serving of alcoholic beverages should be discontinued one hour before the end of the event at a minimum.
6. Event sponsors not only must refuse to serve alcoholic beverages to anyone appearing intoxicated, but also
must provide appropriate assistance to such persons. Assistance may include, but is not limited to, providing safe transportation arrangements for intoxicated guests, and medical help.

7. Event must comply with all Federal and New York State Laws.

Procedures for Serving Alcohol at Exhibitions

Students who wish to serve alcohol in connection with a student exhibition opening should consult the appropriate academic dean for the policies and procedures to follow, including ordering a guard. The following rules apply to all exhibitions where alcohol is served.

1. The serving of hard liquor is not permitted.
2. Alcohol service will be permitted at student receptions only when the student presenters are over 21 years of age. In the case of a group presentation the majority of students must be over 21.
3. Coordinators for Exhibitions must hire a licensed caterer for the serving of wine and beer at events. Such serving will be limited to those persons who can prove attainment of the minimum legal drinking age in New York State of 21 years. To facilitate quick identification of students of legal age at the point of service, a process of carding that requires the presentation of a Cooper Union ID will be carried out by a security available solely for that purpose and paid for by the student exhibitors. There are no exceptions to this requirement.
4. Such events must include the serving of food, in sufficient amount for the number attending, and the displaying of a variety of non-alcoholic beverages must be featured as prominently as alcoholic beverages and dispensed in the same area.
5. The promotion of alcohol in advertisements for events is not permitted.
6. Event sponsors must not only refuse to serve alcoholic beverages to anyone who appears intoxicated, but also must provide appropriate assistance to such persons. Assistance may include, but is not limited to, providing safe transportation arrangements for intoxicated guests and arranging for medical help.
7. State law requires that a U.S. or Canadian driver’s license or non-driver identification card, a valid passport or an ID issued by the U.S. Armed Forces must be used as written evidence of age for procuring alcoholic beverages.
8. The amount of alcohol permitted shall reflect the number of students over 21 years of age at the event, as approved by the academic dean, and in no case shall exceed 48 (12 oz.) cans or bottles of beer or 12 (750 mL) bottles of wine.
9. Event must comply with all Federal and New York State Laws.
Campus Security and Safety

The Cooper Union has been fortunate in maintaining an atmosphere where serious criminal activities have not occurred. Our goal remains to encourage the integrity, honesty and responsibility of each individual student to maintain an atmosphere of harmony and mutual respect.

Every incident of behavior that seems inconsistent with our philosophy and principles of safety and security should be reported to appropriate campus authorities. The guards in the lobby of each building should be notified immediately of any emergencies. Depending on the circumstances, it may also be appropriate to call the police at 911.

Students and staff should also file an incident report with either the Office of the Director of Facilities Management or with the Office of Student Services. Such reports help The Cooper Union respond to breaches in security. The director of facilities management maintains a daily log of such incidents. This log is available for inspection in room 111, 41 Cooper Square.

When appropriate, information about such incidents shall be disseminated to the community as a whole via fliers or memoranda.

The Campus Crime Awareness and Campus Security Act of 1990 requires colleges and universities to make available to all current students and employees and to all applicants for enrollment or employment statistics concerning the prevalence of certain types of crime on campus and in the neighborhood. These statistics are published annually in the Campus Safety, Security and Fire Safety Report available on the Cooper Union website and from the Office of Student Services, 29 Third Avenue, 3rd floor, New York, NY 10003. Crime statistics are available online at http://opc.ed.gov/security.

Code of Conduct

Preamble: As an educational community, The Cooper Union affirms the freedom of its students to pursue their scholarly, artistic and intellectual interests. The Cooper Union has developed policies to safeguard this freedom and to maintain an environment conducive to academic endeavor. These rules are not intended to replace federal, state or municipal laws. All Cooper Union students are responsible for upholding such laws, and any violation of law may result in disciplinary action being taken by The Cooper Union.

In addition to the Standards of Conduct defined below, students are bound by the rules of their individual school or program, and any rules regarding the use of the facilities or equipment at The Cooper Union, including, but not limited to, classrooms, the library, the Great Hall, the Student Residence, the Computer Center, laboratories, shops, studios, and other facilities.
The Cooper Union has established separate policies, published elsewhere, to adjudicate claims of academic dishonesty, and claims of discrimination or harassment against a protected class (e.g., race, sex, and disability).

The Cooper Union reserves the right to modify and/or amend this Code at any time it deems necessary and in accordance with applicable laws.

Part One: Student Rights
Students have certain rights established by federal, state or local statutes or under institutional policy. Among these rights, but not limited to these alone, are:
The freedom to engage in free discussion, inquiry and expression.
The freedom of access to public records.
The freedom of association.
Freedom from assault.
The right to express views on issues of institutional policy.
Freedom of the press.
Freedom from discrimination on the basis of age, race, religion, sex, color, disability, sexual orientation, ethnicity, national origin, or any other legally protected characteristic.
Freedom from discriminatory or sexual harassment.
Freedom from improper academic evaluation.

Part Two: Standards of Conduct for Students
Category A The Cooper Union finds the following violations extremely serious and subject to the highest penalties:
1. Physical assaults resulting in injury, including sexual assaults.
2. The sale of drugs in a manner that violates federal or state law.
3. Possession of drugs, as defined as a felony, under state or federal law.
4. Undermining campus safety by setting off false fire alarms, discharging fire extinguishers, tampering with security systems, or ignoring the instructions of security guards or studio monitors.
5. Possessing or introducing dangerous weapons to campus in the manner prohibited in the Weapons Policy.
6. Violations of campus alcohol policy that result in injury or damage to property or undermine the safety and security of the campus community, including acts of hazing.
7. Acts of fraud. Some examples of these acts, but not limited to the following, are: misrepresentation, falsifying records or documents, assuming the identity of another person, or furnishing fraudulent information.
8. Acts of theft or vandalism (including graffiti) against the property of another student, guest, staff or faculty member or against the property of Cooper Union itself.
9. Reckless behavior involving the interior or exterior structures of campus build-
nings. Some examples of these acts, but not limited to the following, are climbing the grid of 41 Cooper Square, hanging over terrace balustrades, and accessing the roof of the Student Residence.

For these categories of violation, the sanction will ordinarily be suspension or dismissal. In some cases, the Presidential Right of Summary Suspension will be invoked.

Category B

The purpose and ideals of The Cooper Union depend, for their full achievement, on respect, cooperation and integrity among members of the community. The Cooper Union has adopted the following rules of behavior in the interests of maintaining an orderly atmosphere.

1. At all reasonable times, a student shall comply with a request for identification from an employee or security guard of The Cooper Union.
2. Students will respect the building hours and will leave the premises at the appropriate time.
3. Students will cooperate with the staff supervising the facilities of The Cooper Union.
4. Except for actions protected under state or federal law or the institutional governances, a student may not willfully obstruct or disrupt any authorized activities on college premises or other Cooper Union activities, including its public service functions.
5. A student may not engage in libel or slander.
6. A student may not be involved in acts that cause physical or psychological harm.
7. A student may not consume, buy, sell, borrow, possess, lend or give as a gift any drug, narcotic, or alcoholic beverage in such a way that would be a violation of any local, state or federal law or the institutional alcohol policy.
8. When a student has a guest on campus, the appropriate guest procedures must be followed, and the student is responsible for the conduct of his or her guest and for any damages caused by that guest.
9. The use of the computer and network facilities is for the purpose of supporting the educational experience at The Cooper Union. Unauthorized or inappropriate use of these facilities is prohibited. Misuse may include, but is not limited to, damaging or altering records or programs; invading the privacy of other users by using or manipulating directories, files, programs or passwords; engaging in disruptive behavior; illegally duplicating or copyrighted or licensed software; using the facilities in support of a commercial concern or venture or any unauthorized use of network and/or computer hardware, software, accounts or passwords.
10. A student may not gamble for money or other valuables while on the campus of The Cooper Union.
11. A student may not threaten members of the Student Judicial Committee or attempt to tamper with witnesses to the Student Judicial Committee.
12. A student may not smoke within any Cooper Union building or within 20 feet of the entrance to any Cooper Union building.

Category C: Other Complaints. The Student Judicial Committee may also consider complaints that are not delineated under Category A or Category B above, provided that the person against whom the complaint is made is notified in writing as to whether the proceeding will follow the rules of Category A or Category B, delineated below.

Part Three: Presidential Right of Summary Suspension.
Subject to prompt review, the president of The Cooper Union may summarily suspend a student from the college when, in his or her best judgment, such immediate action is necessary for protecting the health and safety of the college and/or any member of the college community. The president will consult with the student’s academic dean prior to such action, if time permits. Any person so suspended shall have all the rights as outlined in The Code of Conduct. Summary Suspensions must be reviewed by a judicial panel within seven regular business days of the suspension. Until and unless the accused is found to have violated the Standards of Conduct, his/her status as a member of the Cooper Union community shall not be altered. Any person so suspended shall have the right, if the suspension is not upheld, to excused absences from all classes and examinations during the suspension period.

Part Four: The Cooper Union Student Judicial Committee
1. **Jurisdiction.** The Student Judicial Committee of the Joint Student Council shall have jurisdiction of all matters involving an alleged violation of the Standards of Conduct stated above.
2. **Membership.** Each student council shall elect two representatives and two alternates to the Student Judicial Committee and one representative and one alternate to the Judicial Appeals Committee. Student Judicial Committee members must be elected to the Joint Student Council with plurality and cannot be on probation for academic reasons or have been issued a sanction by the Student Judicial Committee. Judicial panels shall ordinarily be chosen from members of the Student Judicial Committee; however, any member of the Joint Student Council eligible to serve on the Student Judicial Committee can serve on a judicial panel if necessary.
3. **General Rules.** Proceedings conducted by the Student Judicial Committee are completely independent of any civil or criminal proceeding and may occur simultaneously with such court action. The Student Judicial Committee is administrative, rather than criminal or civil, in nature. The standard of proof applied by the Student Judicial
Committee shall be “preponderance of the evidence.” Judicial Panels do not use technical rules of evidence. Committee members may take notice of any matter in the common experience of Cooper Union students.

Before calling a Judicial Panel, the dean of students shall review the list of eligible panelists for possible prejudice with the complainant and the person being accused. The dean of students shall notify the members of the Judicial Panel as to the time and date of the hearing. This does not preclude the dean of students from acting as witness, if necessary.

Representatives to the Student Judicial Committee may also serve as mediators in informal hearings.

All hearings shall be considered confidential except when applicable law mandates disclosure to the community; the complainant, however, shall have the right to be notified as to the result of the hearing.

Every student charged under The Code of Conduct shall be presumed not to have violated The Code of Conduct until the Judicial Panel arrives at its decision.

If, because of a disability, a student participating in the any stage of the hearings (or subsequent appeals process) in any capacity requires a modification to policies, practices, or procedures, and/or an auxiliary aid or service the student should submit such a request in writing to the dean of students at least five days prior to the scheduled start of the hearing so that the request can be appropriately assessed prior to the start of the hearing.

4. Judicial Panels for Category A Violations. For a Category A offense, the Judicial Panel shall be a subcommittee of the Student Judicial Committee drawing one representative from each student council plus any two administrative officers of The Cooper Union. The associate dean of the school in which the student charged in the complaint is registered shall ordinarily be invited to participate as one of the administrative officers on the Judicial Panel in the Category adjudication. Persons charged with a Category A offense have the right to a representative of his or her choice at his or her expense, but the representative’s role will be limited to providing support to the person being charged. Cooper Union may also appoint a lawyer to such committee to serve as an adviser to the committee members.

5. Judicial Panels for Category B Violations. For a Category B offense, the Judicial Panel shall be a subcommittee of three from the Student Judicial Committee, generally one representative from each school.

A Judicial Panel formed under the rules of Category B has the right to stop the hearing and request that the case be heard instead under Category A Rules, so long as the parties are notified and the Category A hearing is scheduled within 7 days.
Part Five: Procedures for Filing Charges
1. Any member of the Cooper Union community may file a written complaint about an infraction of the Standards of Conduct by a student. Such complaint should be addressed to the Student Judicial Committee and delivered to the Office of Student Services, 29 Third Avenue, 3rd floor, New York, NY 10003, Attention: Dean of Students.
2. A complaint must be made within 30 days of the alleged infraction.
3. The complaint must set forth the basic facts of the alleged infraction, including the date, time, and place in which the incident occurred.
4. The dean of students will meet with the complainant to determine if the complaint can be resolved informally or through mediation. The penalties of warning, probation or loss of privileges may be meted out in these cases by the dean of students, with the agreement of all parties concerned.
5. Absent a successful resolution, the dean of students will schedule a hearing within 10 business days. S/he will notify the student being charged by letter of the charges, place and time of the hearing, and whether it will be conducted as a Category A or B hearing.

Part Six: Procedures for Conducting Hearings
1. The Judicial Panel shall elect one of its members to be chairperson and to preside over the hearing. The person presiding shall exercise control over the proceedings to avoid needless consumption of time and to achieve orderly completion of the hearing. Any person who disrupts a hearing, including the parties to the complaint, may be excluded by the person presiding.
2. The failure of the student charged to appear at the stated time and place shall constitute a waiver of the right to a hearing. The complainant shall have the option of not appearing at the hearing; however, a complainant cannot selectively attend portions of the hearing but must follow the instructions of the chairperson.
3. Any person being charged, having appeared at the hearing, shall have the right to contest the acceptance into the record of any evidence presented in support of the charges.
4. Each party shall have the right to summon witnesses, provided that a list of these is presented to the dean of students 72 hours prior to the hearing. The chairperson of the hearing shall have the right to exclude witnesses who appear to offer redundant testimony.
5. Each party may question the other party’s witnesses, under the supervision of the chairperson.
6. The chairperson shall summon witnesses into the hearing room and ask them to withdraw once they finish testifying.
7. Hearings shall be taped on an audio recorder. Tapes shall be destroyed at the expiration of the appeal process.

8. After testimony is concluded, the panel shall come to a decision and present the decision in writing to the person being charged, either by hand or by mail to the last address given by the student.

9. In the event of a disciplinary dismissal, the president shall review the recommendation before it is put into effect.

Part Seven: Disciplinary Sanctions

By majority vote, the Judicial Panel may impose any of the following sanctions. The Student Judicial Committee will retain a written copy of the sanction in its file until the student permanently separates from The Cooper Union.

1. Warning. A warning in writing, in the case of a minor infraction, that further violation of the Standards of Conduct may result in a more severe disciplinary sanction.

2. Loss of Privilege. In cases that involve breaking the rules of a specific facility, students may lose the privilege of using that facility on a temporary or permanent basis or have the hours of their use restricted.

 A student who loses privileges may also be issued a warning or higher penalty.

3. Behavioral Probation. A letter of censure given in instances of more serious violations of the Standards of Conduct. Behavioral probation is a trial period in which a student who has been in difficulty has the opportunity to demonstrate that he or she can be a responsible member of the community. The terms of the probation may be varied to fit the individual circumstances.

4. Suspension. Given in cases where it is judged that the student should be removed from the college community. This penalty is for a stated period of time, either one semester or one year. A suspended student is prohibited from being on any Cooper Union premises during the period of the suspension without written authorization from the Office of the President. A notification of the suspension will be sent to the Office of Admission and Records, the Office of the President, and the Office of Buildings and Grounds as well as to the student’s academic dean.

5. Dismissal. Subject to the approval of the president of the college before taking effect, a disciplinary dismissal involves involuntary and permanent dismissal from the college. The president shall have the right to accept, reject or modify the proposed dismissal. The dismissal will be a permanent part of the student’s file and will be noted on his or her transcript.

6. Other Actions. The Judicial Panel may impose other penalties that it deems appropriate to the infraction. Examples of such penalties are: financial restitution for damages or for medical expenses, letters of apology, community service work, etc.
7. Legal Action. The above listed penalties shall be in addition to any penalties or liabilities pursuant to the laws of the State of New York, both civil and criminal. Cooper Union or its designee may, at its discretion, depending on the gravity of the violation, file a criminal or civil complaint. Filing an action under this Code does not preclude the complainant from also filing a civil or criminal complaint.

Part Eight: Appeal Process

1. Filing an Appeal. Any student found to have violated any of the Standards of Conduct may appeal the decision of the Judicial Panel within 4 business days by writing a letter to his or her academic dean setting forth the reasons why the appeal is being made. The dean will convene an Appeal Board within 5 days of receiving the appeal letter.

2. Composition of the Appeal Board. The board will consist of two students and one academic dean. Ordinarily, the academic dean and one of the students shall come from the same school as the appellant. The remaining student shall be from one of the other schools. Alternates may replace student representatives and have full rights to vote on the appeal board.

3. Limitations of the Authority of the Appeal Board. The Appeal Board shall limit its review to these issues:
 —does the record show that the party had a full and fair opportunity to present his or her case?
 —was the sanction imposed fair and proper in light of the infraction proved?

4. Decision of the Appeal Board. After considering the record and the letter of appeal, the Appeal Board may:
 a. Accept the decision of the Judicial Panel;
 b. Return the case to the Student Judicial Committee for a further hearing in keeping with the Appeal Board’s instructions;
 c. Reverse the Judicial Panel’s decision and dismiss the case;
 d. Accept the Judicial Panel’s decision but reduce the sanction. The sanction may not be increased.

 If the Appeal Board accepts the decision of the Judicial Panel, whether or not it reduces the sanction, the matter shall be deemed final.
Chairs
Malcolm King EE’97, Chair
Aftab Hussain ME’97, Alumni Trustee Vice Chair

Trustees
Anne Chao
Maurice D. Cox AR’83
Brickson Diamond
Elias Dills AR’24, Student Trustee
Joseph B. Dobronyi Jr.
Wanda Felton
Pamela Flaherty
Judy Freyer
Elizabeth Graziolo AR’95, Alumni Trustee
J. Dana Hughes
Anthony Ianno EE’85, Alumni Trustee
Tim Ingrassia
Jamie Levitt
Lou Manzione ChE’75, Alumni Trustee
Cristina Ross AR’81, Alumni Trustee
Brian Steinwurtzel
Robert Tan AR’81, Alumni Trustee
Ben Vinson
Carol Wolf A’84, Alumni Trustee
Shirley Yan CE’23, Student Trustee

Representatives to the Board
Diana Agrest, Full-time Faculty
Amanda Simson, Full-time Faculty
Raffaele Bedarida, Full-time Faculty
Steven Hillyer AR’90 Staff
Beverly Joel, Part-time Faculty
OFFICERS

Laura Sparks
President
Malcolm King
Chair, Board of Trustees
Aftab Hussain
Vice Chair of the Board of Trustees
John Ruth
Vice President, Finance & Administration
Treasurer, Board of Trustees
Charlotte Wessell
Director, Office of the President
Secretary to the Board of Trustees

CABINET

Nada Ayad, associate dean, Faculty of Humanities and Social Sciences
Natalie Brooks, chief talent leader
Mark Campbell, vice president for enrollment
Christopher Chamberlin dean of students
Terri Coppersmith, vice president of Alumni Affairs and Development
Hayley Eber, associate dean, The Irwin S. Chanin School of Architecture
Mike Essl, dean of the School of Art
Adriana Farmiga, associate dean of the School of Art
Mindy Lang, creative director
Kim Newman, media relations manager
John Ruth, vice president, finance and administration
Ruben Savizky, associate dean, Albert Nerken School of Engineering
Barry Shoop, dean of the Albert Nerken School of Engineering
Nader Tehrani, dean of The Irwin S. Chanin School of Architecture
Antoinette Torres, vice president, institutional effectiveness
Charlotte Wessell, director of the Office of the President and board relations
The Foundation Building (A)
7 East 7th Street
between Third & Fourth Avenues

41 Cooper Square (B)
Third Avenue between 6th & 7th Streets

Office of Enrollment
Admissions/The Hub (C)
41 Cooper Square
Entrance on 6th Street

Administrative Offices (D)
30 Cooper Square
Fourth Avenue between 5th & 6th Streets

Residence Hall (E)
29 Third Avenue

Stuyvesant Fish House (F)
21 Stuyvesant Street
View Map