The Team

2017 AIChE Cooper Union Student Chapter Chem-E-Car Team
Mubtasim Anjum | Luishifeng Chen | Dave Chiu
Laurinio de los Reyes | Mickey Huang | Grace Li | John Nguyen
Vishesh Padhanti | Timil Patel | Andy Qiu

Special thanks to:
Professor Daniel Lepek | Victoria Heinz | Revans Ragbir | Mike Westbrook

Operation

\[\text{MgCO}_3 (aq) + C_6H_8O_7 (aq) \rightarrow C_6H_6MgO_7 (aq) + H_2O (l) + \text{CO}_2 (g)\]

- Powered by pressurized CO\(_2\).
- Ratio of reactants and water (added to promote mixing) optimized through testing.
- Distance traveled controlled by reactant quantity.
- Car stops when CO\(_2\) is used up and Lego engine stops running.

50% ORGANIC LEMON AID

The Car

Distance Calibration

Process Diagram

Unique Features

- **Lego Pneumatic Engine**
 - Runs on pressurized CO\(_2\)
 - 4 pistons
 - Easy to clean, plastic MOC will not corrode
 - Lightweight

- **Gym Chalk & Citric Acid**
 - Household chemicals, easily procured
 - Affordable
 - Safe to utilize, NFPA rating of 0 or 1 in all categories

- **Custom frame**
 - Lightweight and resilient
 - Precise fitting of components

EHS Considerations

- **Environment**
 - Low carbon dioxide emissions

- **Health**
 - Low toxicity chemicals

- **Safety**
 - Pressure regulator allows for safe, consistent engine operation
 - Relief valves installed on reaction vessel and after regulator
 - Lever valve for emergency stop
 - All components selected for MAOP service & chemical compatibility
 - Gauges read 2x the max operating pressure