ABSTRACT

Method to Impute Missing Features in Metabolomics Data

using Rank-Transformation and Matrix Factorization

Metabolomics data helps computational oncologists identify biomark-
ers of disease and therapeutic response. During the conversion of a raw
tissue sample into an observation in a metabolomics data matrix, the
abundances of key metabolites of interest may not be recorded. Rather
than discard the data and repeat the study which is missing measure-
ments for metabolites of interest, a researcher could instead augment
their old data with imputed metabolite abundances, saving time and
money. This thesis describes a method to impute the abundances of
unmeasured metabolites in batches of metabolomics data using non-
negative matrix factorization. The method learns the abundance of an
unmeasured metabolite by modeling metabolite covariation in datasets
where the metabolite of interest is measured. It then transfers this
knowledge to a hold-out dataset where the metabolite of interest is
unmeasured. The effectiveness of this imputation method is bench-
marked with three test cases on Memorial Sloan Kettering’s nine batch
pancancer metabolomics dataset. The significance of the method is
demonstrated in use cases such as biological interpretation of embed-
dings and active learning of core features. The sensitivity of the model

is analyzed through experiments on simulated metabolomics data.
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