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ABSTRACT

As a precursor to capsize, marginal stability, resulting from
incorrect loading conditions and crew negligence, poses a seri-
ous danger to ships. Therefore, as a benchmark problem for pre-
venting capsize, the use of an actively controlled pendulum for
the stabilization of a marginally stable ship was analyzed. Lya-
punov stability criteria and closed loop eigenvalues were used
to evaluate the extent to which a proposed pendulum controller
could cope with different ship stability conditions. Equations of
motion were solved to observe the controller’s performance un-
der different damping conditions. The behavior of the controller
yielded the following results: a marginally stable ship can be sta-
bilized, as long as there is no right hand plane zero; energy dissi-
pation is key to the stabilization of a marginally stable ship; the
controller must have knowledge of the ship’s stability to prevent
controller-induced excitation; and a stabilized tilted ship is more
robust to external disturbances than a stabilized upright ship.

Nomenclature

m Ship Mass including Pendulum Mass
L Ship Rotational Inertia

My Pendulum mass

g Gravitational Acceleration

(0] Roll Angle

) Roll Anglular Velocity of Ship
(S Pendulum Angle

O Pendulum Angular Velocity
Ocw,er Reference Pendulum Angle

bronl Ship Roll Damping
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bpena  Pendulum Damping
Tyena  Torque on the Pendulum
Tpend,eq Pendulum Torque that Satisfies Equilibirum

Zg z-coordinate of the Center of Mass (COM)
Py Density of Displaced Fluid
14 Ship Displaced Volume

B,G  Distance btw. Centers of Mass and Buoyancy at ¢ = 0°
B,M, Distance btw. Buoyancy Center and Metacenter

GM,  Metacentric Height

GZ Righting Arm

Ley Length of Pendulum

Losr  Pendulum Offset

ki Nonlinear Feedforward Reference Gain
ky Linear Feedback Gain
kp Proportional Feedback Gain

Zship ~ Potential Right Half Plane Zero of Ship
Dship Right Half Plane Pole of Ship

Eecn  Total Mechanical Energy

KE Total Kinetic Energy

PE Total Potential Energy

1 INTRODUCTION

There are three approaches to preventing ship capsize: roll
damping, dynamic vibration absorbing, and roll stabilization.
Roll damping and vibration absorbing are the industry standards
since they require the least actuation effort, considering the fact
that a ship is designed to have a stable upright orientation. Chen
explored nonlinearly controlled anti-roll tanks used as a dynamic
vibration absorber to prevent boat capsize [1], and Pesman pre-
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sented the use of roll damping to prevent ship capsize via the
dissipation of mechanical energy [2]. Unfortunately, the most
tragic and historic capsizes have occurred because of crew neg-
ligence, flooding, and incorrect loading [3]. In these situations,
capsize is the result of a negative metacenter that forms a right
half plane (RHP) pole, which indicates roll instability. Active
roll stabilization for such a ship requires large forces and mo-
ments that can exceed the material limits of the ship and actua-
tors. This is why conventional ship designs have low centers of
mass. Yet, marginal roll stability exists in nature and can hap-
pen upon an unsuspecting vessel, the 2014 MV Sewol capsize
being one tragic example [3], which calls for an active control
scheme that can deal with marginal stability. Stabilization at
marginal stability may be possible as long as required actuator
effort and bandwidth are satisfied. This paper wishes to answer
the question of whether a marginally stable ship can and should
be actively stabilized.

Since ships are designed to be upright in calm seas, a stable
but incorrectly loaded ship must pass through a point of marginal
stability prior to entering a region of roll instability [4]. The
regime near the marginal stability point should support active roll
stabilization, until loading conditions can be corrected. The size
of this stabilization regime depends on the speed of the pendulum
and the energy dissipation rate due to roll damping. In technical
terms, the roll actuation bandwidth of the ship is bounded by a
RHP-zero due to roll damping in the upper limit and the RHP-
pole due to a negative metacenter in the lower limit. Skogestad
describes that the actuator bandwidth should be at least twice
greater than the RHP-pole and at most half of that of the RHP-
zero [5]. Care should be taken to avoid situations in which the
RHP-zero is less than four times the RHP-pole—a case in which
the ship can be only stabilized theoretically [5].

A ship can be viewed as a pendulum with a ball joint at-
tached to the center of buoyancy [6]. With a center of mass be-
low a critical height, a ship is self-righting and, in control terms,
self-regulating. With a center of mass above the critical height,
the boat will turn over like an inverted pendulum—this is one
form of capsize. Here, the critical height represents a cross-over
point, a point of marginal stability. The ship discussed in this
paper is unlike a conventional ship. It is equipped with an actu-
ated pendulum that shifts the ship’s center of mass side to side,
effectively transforming the overall ship system into a double
pendulum. In order to determine whether the pendulum can sta-
bilize the marginally stable ship, one turns to the equations of
motion, Lyapunov stability analysis, and closed loop root locus
plots, while at the same time keeping in mind Skogestad’s warn-
ing.

2 CONTROLLING A MARGINALLY STABLE SHIP
In this section, the Lagrangian of the coupled ship-
pendulum sytem is presented, followed by equations of motion

and a discussion on static roll stability in the marginally stable
regime. Then an actuator control law is proposed to stabilize a
marginally stable ship and analyzed for its actuation effort and
Lyapunov stability. Conclusions are also made about the practi-
cality of controlling a marginally stable ship, based on parameter
analyses.
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Figure 1: Sketch of the Ship-Pendulum Problem Setup.

2.1 Modeling of a ship

For simplicity, only the roll degree of freedom of a ship is
considered. A sketch of our setup is shown in Fig. 1. The ship
has a mass m and mass moment of inertia /. For active roll con-
trol, a servo-actuated simple pendulum of length L.,, and mass
M, 1s mounted at a height L, + L, ¢ about the center of mass
of the ship. Let ¢ denote the roll angle and 6., the pendulum
angle. Let g be the gravitational constant. For the derivation
of the equations of motion EOM for the ship-pendulum system,
differentiation is performed on the following Lagrangian:

L=KE —PE, (D

where the kinetic energy KE and potential energy PE are respec-
tively

(L + e (Lew +Logr)*) § i mewO, L, n

2 2 (2
- mcwq)echcw (Lcw + Loff) COS(eCW)

KE =
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and

PE = mg (GM(1 —cos(¢)) — 0.5B,M(2 — sec(9) —cos(¢))) +

Mew& (Loff 4 Lew) €08(9) — Loy cos(9+6cy)) -

3)
Nonconservative forces are added in afterwards, namely damp-
ing and torque input. In eq. (4), allow constant roll damping b,,;
for the ship and constant viscous bearing damping b.nq for the
pendulum servo. Let the servo apply an external torque Tpenq
on the pendulum. Note that the model neglects changes in ship
buoyancy and servo start-up friction in the pendulum. If more
degrees of freedom are desired, see Appendix A for a 7-DOF
Lagrangian. In descriptor state space form, the EOM are given
by

Ex = f(x,u), 4

. coa 1T . .
where the state is x = [¢ O O GCW] ; the input is u = T),pnq; the
coupling matrix is

001 0
000 1
00 e e
00 e ey
€l :[xx+mcw(Lcw+Laff)2
ey = —MeywLey (Lcw +L0ff) COS(GCW)

E =
&)
€3 = mchzw;
and the vector field is
. . T
f(X,u) = [q) Ocw f1 fZ] )
fi= _mcwegwl‘cw (Lcw + Loff) Sin(ecw)+
—— BM .
— mgsin(¢) (GMX Tl tan2(¢)> — b+ (©)

MmMew8 ((Lcw + Loff) Sin(¢) —Lew Sin(q) + ecw))
= —mewgLlew Sin(ecw + ¢) - bpendecw + Tpenda

See Appendix B for the numerical values of the ship-pendulum
system discussed in this paper. Note that the roll damping of the
ship b,,;; was estimated via the Ikeda method [2].

2.2 Marginal Stability and Justification for Control
The ship’s equations of motion incorporate the classic wall-

sided formula [7], which models the righting arm GZ of the

buoyancy-gravity force couple for roll angles whose respective

Figure 2: Buoyancy-Gravity Force Couple.

waterplanes do not exceed the walls of the ship (or else a piece-
wise treatment of the formula is required for higher roll angle
intervals). A more dynamic alternative to the wall-sided for-
mula, which incorporates ocean waves, can be found in [8], but
by assuming calm, level seas, the wall-sided formula will suf-
fice. Fig. 2 can be used to reconstruct the wall-sided formula,
where point M is the Metacenter; point G is the center of mass
COM,; point B, is the center of buoyancy at zero roll; and B is the
current center of buoyancy of the ship at the roll angle ¢. For a
conventional ship, the wall-sided formula defines the static equi-
librium roll angles of the ship and determines whether the ship
is stable. For the actively controlled ship featured in this paper,
the wall-sided formula describes static equilibrium roll angles if
the pendulum angle is fixed, i.e. the pendulum is a dead load on
the ship. Otherwise, for a freely rotating pendulum, the entire
descriptor state space eq. (4) should be set to zero and solved
for sets of equilibrium roll and pendulum angles. The wall-sided
formula accounts for the ship’s geometry and mass in a liquid of
density p,,. Its expression is given by

B, M,

GZ = sin(9) (GMX—f— tan2(¢)> , @)

which is equivalent to

GZ = ypcos(0) + (zp — z8o) sin(0) — B,Gsin(9).  (8)

Note that a positive roll angle ¢ results in a rightward displace-
ment yp and upward displacement zp — z, in the center of buoy-
ancy, relative to the ship’s frame of reference.
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The distance between the upright center of buoyancy and the
metercenter B,M, is obtained via the following expression

_ wal ysz
= 7V ,

BoMy ®)

where A,,; is the area of the ship’s waterplane; y is the rightward
coordinate on the ship’s body fixed frame; and V is the displaced

_m

volume of the ship obtained via o)

The metacentric height GM, is obtained via the geometric
relationship,

GM, =B,M,—B,G, (10)

where B,G is the distance between the upright center of buoy-
ancy and the center of mass.

Stability favors a positive righting arm, GZ, for a positive
roll angle. A stability problem arises when a ship’s righting arm
changes sign from positive to negative at ¢ = 0°, as this indi-
cates that ¢ = 0° is an unstable equilibrium orientation and that
there exists a loll angle, an unwanted equilibrium position where
0 # 0°. Integration of equation 1 with respect to roll angle yields
a potential energy curve in which one can distinguish between
stable and unstable equilibrium roll angles. With more geomet-
rical information of the vessel, namely the plane of its deck, it
is possible to determine the angle of vanishing stability, if one
exists [7]. The potential energy curve, illustrating static roll sta-
bility for the ship studied in this paper, is featured in Fig. 3. The
concave upward portion of the curve indicates that ¢ = 41° is a
stable equilibrium point, and the two concave downward por-
tions show that ¢ = 0° and ¢ = 80° are unstable equilibrium
points.

2.3 Proposed Control Law

A control law for the pendulum is proposed to stabilize the
ship, based on equilibrium considerations obtained by setting the
equations of motion, eq. (4), equal to the zero vector. When f>
is set to zero, an expression for the equilibrium pendulum an-
gle O, rer is obtained in terms of the desired equilibrium torque
Tyend eq and the current roll angle 0,

T,
Ocrrey = sin”! (”“) -9 (11)

MeywgLeyw

The desired equilibrium torque is obtained from the substitution
of f> into fi, yielding

. —— B,M
Tpend,eqg = —mgsin(¢) (GMX + % tan’ (¢)> +

Mewg ((Lew +L0ff) sin(9)) .

12)
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Figure 3: Potential Energy Curve with Respect to Arbi-
trary Reference Energy Level for the Ship Analyzed in
this Paper.

With O, ,.; defined, the control law is stated for the servo ap-
plied torque on the pendulum 7},,4:

Tpend = kl (ecw,ref - 9cw) . (13)

Since perfect equilibrium cannot be achieved by the pendulum
servo, a second proportional feedback gain k» on roll is intro-
duced for stability purposes.

T B
Tpend = ki (sin_l <””’“q> —0— ecw> + k0. (14)

MewgLew

where k» = k; +ky and k; > kp > 0. Eq. (14) can be rewritten as

T,
Toend = ki (sinl (”"‘1) —ecw> + k). (15)

MeywgLeyw

The control law, eq. (15), consists of a nonlinear feedfor-
ward term that establishes an equilibrium point for the boat and
a linear feedback term to stabilize the boat about the equilib-
rium point. Gains k; and k; are weights for the feedforward and
feeback terms, respectively. Knowledge of the roll angle ¢ and
0., can come from an inertial measurement unit and shaft poten-
tiometer, respectively. In eq. (15), it is possible to fix the angle of
Ocw,ref to a desired angle, such that the controller becomes linear.
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This can have benefits for microcontrollers, which have limited
storage and computational speed.

For low levels of instability in which the ship does not have a
right half plane zero, it can be shown via feedback linearization
that the feedback term in eq. (15) is sufficient to stabilize the
ship. This approach yields an estimate for the control gain k, and
is executed as follows. If one were to cancel out all the nonlinear
terms in the uncoupled dynamic equations of motion, using the
torque input 7).,q, one obtains an expression that incorporates
nonlinear feedback terms in addition to linear feedback terms

[9]:

T, end . Lcw
mc:chw - Sln(q) N eCW) <1 - (Lcw + Loff) COS(GCW) > *
sin(9)  msin(¢) (GM, +0.5B,M, tan*(9)) N
cos(0cy) Mevw(Lew + Logr) €08(0cy)
L,,02,, tan(0,,,) kpd
8 - MewgLeyw ’
(16)

where k), is a proportional feedback gain on roll angle. For roll
angles between £20° with marginal instability and given that
62, ~ 0, small angle approximation may be applied to eq. (16),
yielding a purely proportional feedback law,

Tyene GM,+0.25B,M, k
pend__ )1 0. (17)
Meyw&Lew Meyw (Lcw +L, ff ) MeywgLew

This then can be rewritten as

m (GM; +0.25B,M.) gL
Tpend =

Leyw —k .
Cowt o) e ) °

(18)

By setting k;, = 0 and k| = 0, comparison of eq. (15) with eq. (18)
gives an estimate of the linear feedback gain k;:

. (m (GM, +0.25B,M,) gL,
-

w
T imewgley | . (19)
(Lcw + Loff) w8 W>

This results in the following control law:

Tpend = qu)' (20)

Eq. (20) is the minimum required structure of the control
law, which is applicable to a marginally stable ship. The esti-
mated feedback gain k; is also useful for heuristically estimating

the value of the feedforward gain ki, simply by setting k, = k.
Values for these two gains can then be tweaked to attain a desired
response. This approach was used to obtain values for gains k|
and k; for the ship discussed in this paper.

2.4 Stability of the Controlled Ship

Lyapunov stability criterion requires that a stable controller
should minimize a Lyapunov function V (x). A suitable function
for V(x) is the total mechanical energy, Eech:

Epech = KE + PE. 21

In order to satisfy the Lyapunov stability criterion, the time
derivative of the Lyapunov function, V(x), must be negative
semidefinite for all time ¢ [9]. This means that the control law
must cause the mechanical energy of the ship-pendulum system
to decrease with time for guaranteed stability. The time deriva-
tive may be evaluated as follows, using the chain rule:

= X (22)

Eq.’s (21) and (4) can be substituted into eq. (22), giving

oL

E-'f(xu)=-=". (23

dV(X) o dEmech o dEmech .
= - ot

dt dt dx

Analytically evaluating eq. (23) yields the following expression:

dE pech . . .
# = - bmllq)2 - bpendezw + Tpendecw- (24)

With some algebraic manipulation, one obtains

Tpend 2 d Emech 2 A Tpend :
_ DEmech ) _y, Bend | Ocw — :
(4bpend dt mllq) + pend \ Yc 2bpend
(25

Since the right hand side of eq. (25) is positive, then

Tpend2 > dEmech

> (26)
4’bpend dt

Given a control law for Tpeng = Tpena(9,0cw), €q. (26) ex-
cludes angular velocities from consideration and forms the up-
per bound for the energy time derivative. It helps visualize
the objective of a controller without integrating the equations
of motion. Fig. 4 shows the resulting energy derivative bound
Tpe,,d2 /(4D pena) for the control law stated in eq. (15).
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Figure 4: Upper Bound on Mechanical Energy Deriva-
tive.

The contour in Fig. 4 characterizes a parabolic cylinder
whose values are approximately 0 J/s for small roll angles along

the line ¢p; = Oy o4, meaning that the derivative of the Lyapunov

function, d‘;(tx) , s approximately negative semidefinite along this

line and that the controller described by eq. (15) should be Lya-
punov stable for all equilibrium points near ¢ = 0°. Intuitively,
this result makes sense because a positive pendulum angle will
tend to correct a positive roll angle, as shown in Fig. 1. Unfortu-
nately, this method does not take angular velocities and damping
into account—so a second stability analysis is needed.

Another means of evaluating closed loop stability about
equilibrium points is a root locus plot of the closed loop poles
of a state matrix, A, which can be obtained via the decoupling
and linearization of eq. (4) about equilibrium roll angles and ex-
ternally applied torques. The linear state space is expressed as

% = E~f(x,u) ~ Adx + Bdu, 27)

where 8x and du are deviations from the equilibrium state and in-
put, respectively. In Figs. 5-6, the plots of the eigenvalues of the
state matrix A for different equilibrium roll angles show stability
trends for how stability changes with increasing roll damping;
increasing vertical center of mass position relative to the water
line; and increasing equilibrium roll angle indicated by the di-
rection of the arrows for a range of ¢ = [—20°,20°]. These plots
show that high roll damping and low center of mass are desired
for poles to remain in the left half plane. In other words, stabi-
lization is only possible at marginal stability.

Using small angle approximation and assuming small angu-
lar velocities, the open loop RHP pole, pyyp, can be estimated as

15

Imaginary Axis

s ; : ; ; i

Real Axis
zg = -0.01524 m and RHP pole =0.48326 and LHP zero = -288.8

. Zg = -0.024092 m and RHP pole =3,97 and LHP zero = -193.298

o Zg = -0.03302 m and RHP pole =5.6334 and LHP zero = -96.976

% zg = -0.04445 m and RHP pole =7.2301 and RHP zero = 26.339

Figure 5: Closed Loop Poles vs. Increasing Roll ¢
for different COM z,. The sign of z, is determined by
the ship’s body fixed coordinate system, depicted in
Fig. 10.
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broll = 0,00015285 m and RHP pole =4,0451 and LHP zero = -1932,978
. b 0= 0.0015285 m and RHP pole =3,97 and LHP zero = -193.,298
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b 0= 0.015285 m and RHP pole =3.2967 and LHP zero = -19.33
ro
x br 0= 0.15285 m and RHP pole =0.92319 and LHP zero = -1.933
0

Figure 6: Closed Loop Poles vs. Increasing Roll ¢ for
Different Roll Damping Values b,,;;.

follows:

(28)
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where a, is defined as

a. — mgGM, +mcngoff + (Loff +Lcw)mcngcw
‘ L LixLey '

(29)

If the pendulum angle is fixed relative to the ship at 0, = 0°,
then a, is defined as

GM
ao = (182 ) (30)
IXX

Using the same small angle approximation, the open loop RHP
zero can be estimated as

mg —  Mecw (Ixx + mey (Lcw + Luff)z)
in=— | —-GM,— ——L,rr—
Zship broll ( T Ty el m(Lew+ Loff)?
3D

In eq. (31), the metacentric height GM,, determines the sign
of zgnip. A negative GM,, corresponding to instability, tends to
shift the zero towards the RHP. Since the zero is left half plane in
the case of marginal stability, care should be taken to ensure that
the LHP zero is not too close to the origin, as it would decrease
the gain and phase margins, hurting the closed loop response. As
the location of the center of mass increases above the waterline
beyond the regime of marginal stability, the zero will switch sign,
becoming RHP. If both zy;, and pyyip, are RHP, a requirement and
limitation on pendulum actuator bandwidth can be stated as long
as the RHP is four times greater than the RHP zero. However,
Zship €an also be less than four times py;;, for a range of z,, as
shown in Fig. 5, thus preventing practical feedback control.

2.5 Performance of the Controlled Ship

In the following plots figs. 7-9, two types of responses are
compared, disturbance rejection and reference tracking, produc-
ing respectively upright ships and tilted ships. For the case of
an upright ship featured in fig. 8, the control law (15) is used
to stabilize the ship from a nonzero intital roll angle to a zero
roll angle—this response is also interpreted as the rejection of an
impulse disturbance torque. For the case of the tilted ship, the
control system tracks a reference roll angle ¢, of 2°, simply by
fixing the value of 0., . obtained from equations (11) and (12)
evaluated at ¢,. . The initial conditions of the tilted ship include
a pendulum angle of 6.,y and a roll angle ¢ of 3°. Responses
for different damping conditions are recorded to show the sensi-
tivity of roll stabilization to combinations of roll damping b,,;
and pendulum damping bp.,q. Mechanical energy plots, normal-
ized by initial mechanical energy, accompany the responses to

show whether the controller is Lyapunov stable (i.e. energy dis-
sipating). The values of damping coefficients for different damp-
ing conditions are presented in table 1. Estimation of the roll
damping coefficient was obtained via the Ikeda Method [2], [10].
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Figure 7: Disturbance Rejection of Ship with Initial An-
gle of 2°: (a) Roll Response, (b) Percent Change in Me-
chanical Energy.

3 DISCUSSION OF THE CONTROL SYSTEM

The rate of mechanical energy decay measures the success
of a roll stabilization response, as demonstrated in Fig. 7(b) and
8(b). The industry rule of thumb does not change—high roll
damping is still desired for a high actuator bandwidth and a high
energy dissipation rate. Both cases of high ship damping ex-
hibited favorable responses with an effective exponential energy
decay taking place in a 4 second interval. Energy decay is also
evidence of Lyapunov stability. In Fig. 9, both roll angle ¢ and
pendulum angle 6., tend be on the line ¢ = 6,,, for the reference
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Figure 8: Reference Tracking of 2° for Ship with Initial
Angle of 3°: (a) Roll Response, (b) Percent Change in
Mechanical Energy.

Damping bron bpend
Conditions (N-m-s-rad™") | (N-m-s-rad™")
Low Roll Damping 0.00153 0.001
Low Pend. Damping 0.00153 0.0001
High Roll Damping 0.0153 0.001
High Roll Low Pend. 0.0153 0.0001
Damping

Table 1: Table of Damping Coefficient Values

tracking ship, which is maintaining a roll angle of 2°. This en-
ergy dissipitating trend is consistent with the energy derivative
surface shown in Fig. (4). Pure proportional control was also
found to be a satisfactory for the tilted ship. Both linear and non-

Bl
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—4 -2 0 2 4 3 8
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- - Low Roll Damping — High Roll Damping

----- Low Pendulum Damping

Figure 9: Pendulum Angle vs. Roll Angle of 2° Tilted
Ship

linear controllers yielded good responses, but the 2° reference
tracking ship displayed superior performance at low roll damp-
ing, as demonstrated by the energy decay graphs in Fig.’s 7(b)
and 8(b). The major pitfall of the righting ship is that the deriva-
tive of the Lyapunov function is negative semidefinite since ac-
tuation should be zero at ¢ = 0°. With the introduction of wave
excitation, the righting disturbance rejecting ship may move in
and out of stability regimes at ¢ = 0° [4]. For the sake of prac-
tically, this region should be avoided, especially if the ship has
insufficient roll damping—hence, the ship should be stabilized at
aroll angle greater than zero, so that the ships roll angle changes
sign much less frequently. This tilt angle could be 1.5° to 2°.
From Fig.’s 7(b) and 8(b), one can see that a tilted ship, main-
taining an angle of 2°, stores three times less mechanical energy
at peak value than the upright disturbance rejecting ship.

4 CONCLUSIONS

The pendulum was able to stabilize a marginally stable ship
at a tilted roll angle and a zero roll angle, thus demonstrating its
value as a benchmark solution to the problem of marginal ship
stability. A linear controller was found to be suitable for roll
angles less than 20°. Even though wave excitation was not con-
sidered, one should see the merit of using impulse signals (IC’s)
in simulating ship stabilization responses because, in the linear
regime of £10°, a response to an arbitrary disturbance torque
signal can be recreated from the linear superposition of mul-
tiple impulse responses. From the energy decay plots, it was
found that a tilted reference tracking ship produced a more fa-

Copyright (© 2017 by ASME



vorable mechanical energy decay than the upright disturbance
rejection ship. The major benefit behind tracking the tilted roll
angle was that it prevented the ship from oscillating dangerously
about ¢ = 0°. A tilted ship was less prone to overshoot. A loll
angle, as shown in Fig. 3, would do quite the opposite for the
uncontrolled case, which is why it is dangerous [7]. Finally, roll
damping was the second most critical feature in the roll stabi-
lization of a marginally stable ship. Roll damping should be
at least the same magnitude as pendulum damping in order to
give the pendulum actuator sufficient time to react. Yet even
with high roll damping, the control system should minimize the
occurence of the ship swinging past ¢ = 0° in either direction.
Further work is being done in validating the conclusions of this
paper with experiment, as well as finding more compact ways
of implementing the pendulum onboard an actual ship. Fig. 10
shows one possible configuration for installation. Additionally,
simulations of a 7-DOF ship-pendulum system are being run to
simulate the effects of maneuvering, motion coupling, and wavy
seas on roll stabilization. By analyzing this coupling, one can
determine whether a stabilized, marginally stable ship can safely
conduct maneuvers and navigate.
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Appendix A: 7-DOF Model

The following lagrangian describes a 7-DOF model of the
ship and pendulum.

1 pr 1 mO0OO| |u
LZE[PCIV][IU] q +§[uvw] OmoO| |v|+
r 00m| |w

(?Com X m [u V W]T)T [p q r]T—i-

mcwéngcwz My (Lcw + Loff)2 (Pz + q2)
+
2 2

— Meyliq (Lcw + L(}ff) + mcva(Lcw + L(}ff) +
- mcwvechcw COS(GCW) - mcwwechcw Sin(ecw)+
- mcwpechcw (Lcw + Loff) Ccos (ecw)+
—mg (GM,(1 — cos(9)) — 0.5B,M(2 — sec(¢) — cos(9))) +
—mg (GM,(1 — cos(8)) — 0.5B,M, (2 — sec(8) — cos(8))) +
+mewg ((Lew + Logr) c08(0) — Loy cos(¢+ 0cy) ) +

+

1
+ (mg - Bo)zglobal - Epngplanzglobal2
(32)
Nonconservative forces may be added after differentiation of eq.
(32).
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Figure 10: Sketch of 7-DOF Ship with Pendulum

Appendix B: Numerical Values of the Ship Studied in
this Paper

m

1.681kg
L 0.009058kg - m?
Mey 0.125kg
g 9.81m-s72
bronl 0.0015285N -m-s-rad~1 as base value
Dpena 0.001IN -m-s-rad~1 as base value
Zg —0.0241m, which is above the waterline at ¢ = 0°
Py 998kg-m~3
14 0.00168m°
B,G 0.05013m
B,M, 0.04111m
Ly, 0.2m
Lorf 0.0m
ki 0.3
ko 0.3
kp 0.265
Zship -193.3
Dship 3.9700
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