
Abstract

A guiding principle in deep learning is that more data leads to better models. However,

even when superclass information is available in a dataset, this extra information has often

gone unused. In this paper, we investigate the use of two-level class hierarchies, composed

of subclasses grouped under mutually disjoint superclasses. We introduce ReSGNet, a new

model that takes advantage of superclass information during training and is based off of

a residual neural network. We accomplish this by adding an auxiliary classifier that is

trained on superclass information and utilize the feature maps from the auxiliary classifier

to assist the main classifier in classifying the subclass. Additionally, we demonstrate that

it is possible to add superclass information to an existing dataset and use the augmented

dataset to achieve higher accuracy.
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