<table>
<thead>
<tr>
<th>Professor Last Name</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Title</th>
<th>Author, Publisher, Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aderogba</td>
<td>CE 121</td>
<td>Structural Engineering</td>
<td>Structural Analysis</td>
<td>Hibbeler, Prentice Hall 8, 6th edition</td>
</tr>
<tr>
<td>Apayzikas</td>
<td>CE 141</td>
<td>Environmental System Engineering</td>
<td>Waste and Waste Water Technology</td>
<td>Hammer & Hammer, Pearson 7</td>
</tr>
<tr>
<td>Gupta</td>
<td>CE 331</td>
<td>Foundation Engineering</td>
<td>Principles of Foundation Engineering</td>
<td>Braja Das, Cengage 7</td>
</tr>
<tr>
<td>Ahmad</td>
<td>CE 842</td>
<td>Design of Reinforced Concrete</td>
<td>Design of Reinforced Concrete</td>
<td>McCormac and Brown, Wiley 9</td>
</tr>
<tr>
<td>Vavilov</td>
<td>CE 443</td>
<td>Advanced Topics in Geotech Eng</td>
<td>Principles of Foundation Engineering</td>
<td>Braja Das, Cengage 7</td>
</tr>
<tr>
<td>Cataldo</td>
<td>CE 444</td>
<td>Hydraulics</td>
<td>Introduction to Hydrology</td>
<td>Viessman & Lewis, Prentice Hall 5</td>
</tr>
<tr>
<td>Viola</td>
<td>CE 481</td>
<td>Bridge Engineering</td>
<td>Bridge Engineering</td>
<td>Zhao & Tonias, McGraw Hill latest</td>
</tr>
<tr>
<td>Newmark</td>
<td>Ch 110</td>
<td>General Chemistry</td>
<td>General Chemistry</td>
<td>Hill, Prentice, McCrery, and Per, Pearson 4</td>
</tr>
<tr>
<td>Newmark</td>
<td>Ch 111</td>
<td>Chemistry Lab</td>
<td>Fundamentals of Analytical Chemistry</td>
<td>Skoog, West, Holler, and Crouch, Brooks/Cole 8</td>
</tr>
<tr>
<td>Ch 130</td>
<td>Physical Property of Chem</td>
<td>Physical Chemistry for the Chemical and Biological Sciences</td>
<td>Raymond Change, University Science Books 2000</td>
<td></td>
</tr>
<tr>
<td>Sawicky</td>
<td>Ch 231</td>
<td>Organic Chemistry</td>
<td>Organic Chemistry</td>
<td>Klein, Wiley 1 or 2</td>
</tr>
<tr>
<td>Sawicky</td>
<td>Ch 251</td>
<td>Instrumental Analysis Lab</td>
<td>Principles of Instrumental Analysis</td>
<td>Skoog, Holler and Crouch, Thomson 6</td>
</tr>
<tr>
<td>Topper</td>
<td>Ch 261</td>
<td>Physical Chem</td>
<td>Quantum Chemistry</td>
<td>McQuarrie, University Science Books 2</td>
</tr>
<tr>
<td>Topper</td>
<td>Ch 140</td>
<td>Biochemistry</td>
<td>Biochemistry</td>
<td>Berg, Tomczok, Stryer, Prentice 6 or 7</td>
</tr>
<tr>
<td>Brazinsky</td>
<td>CHE 131</td>
<td>Advanced Chem Eng Thermo</td>
<td>The Principles of Chemical Equilibrium</td>
<td>Denbigh, Kenneth, Cambridge Univ Press 4</td>
</tr>
<tr>
<td>Davis</td>
<td>CHE 142</td>
<td>Separation Process Principles</td>
<td>Separation Process Principles</td>
<td>Seader, Henley, and Roper, Wiley 3</td>
</tr>
<tr>
<td>Okorafor</td>
<td>CHE 152</td>
<td>Process Dynamics and Control</td>
<td>Chemical and Bio-Process Control</td>
<td>Riggs and Karim, Ferret Publishing latest</td>
</tr>
<tr>
<td>Davis</td>
<td>CHE 421</td>
<td>Adv Chem Reaction Eng</td>
<td>Chemical Reactor Design, Optimization, and Scaleup</td>
<td>Noman, Wiley 2</td>
</tr>
<tr>
<td>Davis</td>
<td>CHE 488/81/488</td>
<td>Convex Optimization</td>
<td>An Introduction to Optimization</td>
<td>Chong and Zak, Wiley 4</td>
</tr>
<tr>
<td>Kirtman</td>
<td>ECE 169</td>
<td>Electrical & Computer Eng Projects</td>
<td>Art of Electronics Student Manual</td>
<td>Hayes & Horowitz, Cambridge Univ. Press</td>
</tr>
<tr>
<td>Keene</td>
<td>ECE 300</td>
<td>Communication Theory</td>
<td>Digital Communications</td>
<td>F.Proaks, McGraw Hill 5</td>
</tr>
<tr>
<td>Shinners</td>
<td>ECE 320</td>
<td>Control Systems</td>
<td>Modern Control System Theory and Design</td>
<td>Stanley Shinners, Wiley 2</td>
</tr>
<tr>
<td>Shinners</td>
<td>ECE 332</td>
<td>Electromechanical Energy Conversion</td>
<td>Circuits, Devices, and Systems</td>
<td>Ralph Smith and Richard Dof, Wiley 5</td>
</tr>
<tr>
<td>Keene</td>
<td>ECE 414</td>
<td>Machine Learning</td>
<td>Pattern Recognition and Machine Learning</td>
<td>Bishop, Springer 1</td>
</tr>
<tr>
<td>Hausman</td>
<td>ECE 431</td>
<td>Microwave Engineering</td>
<td>Microwave Engineering</td>
<td>Pozar, Wiley 4</td>
</tr>
<tr>
<td>Berenbaum</td>
<td>ECE 453</td>
<td>Adv Computer Arch</td>
<td>Computer Architecture: A Quantitative Approach</td>
<td>John Hennessy and David Patterson, Morgan Kaufmann 7</td>
</tr>
<tr>
<td>Wootton, Cumberbatch, P.</td>
<td>EID 101C</td>
<td>Engineering Design and Problem-Solving</td>
<td>Engineering by Design</td>
<td>Gerard Yoland, Pearson Prentice Hall 2</td>
</tr>
<tr>
<td>Tandon</td>
<td>EID 327</td>
<td>Tissue Engineering</td>
<td>Supercells: building with Biology</td>
<td>Tandon & Joachim, TED books 7</td>
</tr>
<tr>
<td>Wootton</td>
<td>ESC 140M</td>
<td>Fluid Mechanics and Flow Systems</td>
<td>Introduction to Fluid Mechanics</td>
<td>Fox, R.; McDonald, A.; Pritchard, John Wiley & Sons 6 or later</td>
</tr>
<tr>
<td>Okorafor</td>
<td>ESC 110.1</td>
<td>Materials Sciences for Chem Eng</td>
<td>Foundations of Materials Sciences and Eng</td>
<td>Smith & Hegens, McGraw Hill latest</td>
</tr>
<tr>
<td>TBD</td>
<td>ESC 130M</td>
<td>Engineering Thermodynamics</td>
<td>Thermodynamics: An Engineering Approach</td>
<td>Cengel, Boles, McGraw Hill 7</td>
</tr>
<tr>
<td>Okorafor</td>
<td>ESC 170</td>
<td>Material and Energy Balances</td>
<td>Elementary Principles of Chemical Processes</td>
<td>Felder and Rousseau, Wiley latest</td>
</tr>
<tr>
<td>Slome/Kumsen</td>
<td>Ma 240</td>
<td>ODE/PDE</td>
<td>Difference Equations with Boundary-Value Problems</td>
<td>Zill, D.; Cullen, M, Cengage 8</td>
</tr>
<tr>
<td>Mintchev</td>
<td>Ma 110</td>
<td>Intro to Linear Algebra</td>
<td>Elementary Linear Algebra</td>
<td>Anton, Wiley 10</td>
</tr>
<tr>
<td>Vulakh, Mintchev, Balyin</td>
<td>Ma 111</td>
<td>Calculus I</td>
<td>Thomas' Calculus</td>
<td>Weir, Hass, Addison-Wesley 12</td>
</tr>
<tr>
<td>Vulakh</td>
<td>Ma 113</td>
<td>Calculus II</td>
<td>Thomas' Calculus</td>
<td>Weir, Hass, Addison-Wesley 12</td>
</tr>
<tr>
<td>Agrawal</td>
<td>Ma 124</td>
<td>Probability and Statistical Inference</td>
<td>Probability and Statistical Inference</td>
<td>Hogg, Tanis & Zimmerman, Prentice Hall 9</td>
</tr>
<tr>
<td>Mintchev</td>
<td>Ma 326</td>
<td>Linear Algebra</td>
<td>Linear Algebra</td>
<td>Friedberg, Insel & Spence, Pearson 4</td>
</tr>
<tr>
<td>Agrawal</td>
<td>Ma 336</td>
<td>Mathematical Statistics</td>
<td>Intro. To Mathematical Statistics</td>
<td>Hogg, McKean & Craig, Prentice Hall 7</td>
</tr>
<tr>
<td>Agrawal</td>
<td>Ma 186</td>
<td>Mathematical Statistics</td>
<td>Statistical Inference</td>
<td>Casella & Berger, Cengage Learning 2</td>
</tr>
<tr>
<td>Bondi</td>
<td>ME 408</td>
<td>Intro to CAE</td>
<td>Finite Element Analysis: Theory and Applications with Ansys</td>
<td>S. Moaveni, Prentice Hall 4</td>
</tr>
<tr>
<td>Bondi</td>
<td>ME 408</td>
<td>Intro to CAE</td>
<td>Finite Element Analysis: Theory and Applications with Ansys</td>
<td>S. Moaveni, Prentice Hall 4</td>
</tr>
<tr>
<td>Wootton</td>
<td>ME 440/ChE440/EID440</td>
<td>Advanced Fluids</td>
<td>Viscous Fluid Flow</td>
<td>White, Frank, McGraw Hill 3</td>
</tr>
<tr>
<td>Kreiss</td>
<td>Ph 165</td>
<td>Concepts of Physics</td>
<td>College Physics</td>
<td>Serway & Faughn, Thomson/Books Cole 5 or 6</td>
</tr>
</tbody>
</table>

RECOMMENDED TEXTS

<table>
<thead>
<tr>
<th>Professor Last Name</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Title</th>
<th>Author, Publisher, Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirtman</td>
<td>ECE 193</td>
<td>Electrical & Computer Eng Projects</td>
<td>Art of Electronics</td>
<td>Horowitz & Hill, Cambridge Univ. Press 2</td>
</tr>
<tr>
<td>Kirtman</td>
<td>ECE 161</td>
<td>Programming Languages</td>
<td>The C Programming Language</td>
<td>Kernighan & Ritchie, Prentice Hall 2</td>
</tr>
<tr>
<td>Luchtenberg</td>
<td>ME 151</td>
<td>Feedback Control Systems</td>
<td>Feedback Control of Dynamic Systems</td>
<td>Franklin, Powell & Emami-Naeini, Prentice Hall 6</td>
</tr>
<tr>
<td>Professor Last Name</td>
<td>Course</td>
<td>Quantity</td>
<td>Course Name</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Agrawal</td>
<td>MA336</td>
<td>15</td>
<td>Mathematical Statistics</td>
<td>Statistical Inference</td>
</tr>
<tr>
<td>Ahmad</td>
<td>CE342</td>
<td>25</td>
<td>Design of Reinforced Concrete</td>
<td>Design of Reinforced Concrete</td>
</tr>
<tr>
<td>Barrett</td>
<td>EID170</td>
<td>30</td>
<td>Engineering Economy</td>
<td>Fundamentals of Engineering Economics</td>
</tr>
<tr>
<td>Bondi</td>
<td>ME40B</td>
<td>10</td>
<td>Intro to CAE</td>
<td>Finite Element Analysis: Theory and Applications with Ansys</td>
</tr>
<tr>
<td>Brazinsky</td>
<td>CHE131</td>
<td>30</td>
<td>Advanced Chem Eng Therm</td>
<td>The Principles of Chemical Equilibrium</td>
</tr>
<tr>
<td>Cataldo</td>
<td>CE444</td>
<td>12</td>
<td>Hydraulics</td>
<td>Introduction to Hydrology</td>
</tr>
<tr>
<td>Davis</td>
<td>CH142</td>
<td>23</td>
<td>Separation Process Principles</td>
<td>Separation Process Principles</td>
</tr>
<tr>
<td>Davis</td>
<td>CHE488/EID488</td>
<td>12</td>
<td>Convex Optimization</td>
<td>An Introduction to Optimization</td>
</tr>
<tr>
<td>Guido</td>
<td>ECE331</td>
<td>15</td>
<td>Foundation Engineering</td>
<td>Principles of Foundation Engineering</td>
</tr>
<tr>
<td>Guido</td>
<td>ECE433</td>
<td>10</td>
<td>Adv Topics in Geotech Engr.</td>
<td>Principles of Foundation Engineering</td>
</tr>
<tr>
<td>Hausman</td>
<td>ECE431</td>
<td>10</td>
<td>Microwave Engineering</td>
<td>Microwave Engineering</td>
</tr>
<tr>
<td>Keene</td>
<td>ECE300</td>
<td>30</td>
<td>Communication Theory</td>
<td>Digital Communications</td>
</tr>
<tr>
<td>Keene</td>
<td>ECE414</td>
<td>25</td>
<td>Machine Learning</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>Kirtman</td>
<td>ECE199</td>
<td>30</td>
<td>Electrical & Computer Engg Projects</td>
<td>Art of Elecronics Student Manual</td>
</tr>
<tr>
<td>Kreis</td>
<td>Ph165</td>
<td>20</td>
<td>Concepts of Physics</td>
<td>College Physics</td>
</tr>
<tr>
<td>Kumarsen/Slome</td>
<td>MA 240</td>
<td>30</td>
<td>ODE/PDE</td>
<td>Differential Equations with Boundary-Value Problems</td>
</tr>
<tr>
<td>Mintchev</td>
<td>Ma110</td>
<td>100</td>
<td>Intro to Linear Algebra</td>
<td>Elementary Linear Algebra</td>
</tr>
<tr>
<td>Mintchev</td>
<td>Ma326</td>
<td>25</td>
<td>Linear Algebra</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>Newmark</td>
<td>Ch110</td>
<td>100</td>
<td>General Chemistry</td>
<td>General Chemistry</td>
</tr>
<tr>
<td>Newmark</td>
<td>Ch111</td>
<td>50</td>
<td>Chemistry Lab</td>
<td>Fundamentals of Analytical Chemistry</td>
</tr>
<tr>
<td>Okarofor</td>
<td>ESS170</td>
<td>25</td>
<td>Material and Energy Balances</td>
<td>Elementary Principles of Chemical Processes</td>
</tr>
<tr>
<td>Okarofor</td>
<td>Ch152</td>
<td>25</td>
<td>Process Dynamics and Control</td>
<td>Chemical and Bio-Process Control</td>
</tr>
<tr>
<td>Savizky</td>
<td>Ch231</td>
<td>30</td>
<td>Instrumental Analysis Lab</td>
<td>Principles of Instrumental Analysis</td>
</tr>
<tr>
<td>Savizky</td>
<td>Ch340</td>
<td>16</td>
<td>Biochemistry</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Shinners</td>
<td>ECE320</td>
<td>25</td>
<td>Control Systems</td>
<td>Modern Control System Theory and Design</td>
</tr>
<tr>
<td>Shinners</td>
<td>ECE332</td>
<td>20</td>
<td>Electromechanical Energy Conversion</td>
<td>Circuits, Devices, and Systems</td>
</tr>
<tr>
<td>Siederoth</td>
<td>ME434</td>
<td>20</td>
<td>Rocket Science</td>
<td>Gas Dynamics</td>
</tr>
<tr>
<td>Slome/Kumarsen</td>
<td>Ma240</td>
<td>50</td>
<td>ODE/PDE</td>
<td>Differential Equations with Boundary-Value Problems</td>
</tr>
<tr>
<td>Synott</td>
<td>EID327</td>
<td>10</td>
<td>Tissue Engineering</td>
<td>Tissue Engineering with Biology</td>
</tr>
<tr>
<td>TBD</td>
<td>ESS130M</td>
<td>30</td>
<td>Engineering Thermodynamics</td>
<td>Thermodynamics: An Engineering Approach</td>
</tr>
<tr>
<td>Topper</td>
<td>Ch160</td>
<td>50</td>
<td>Physical Princ of Chem</td>
<td>Physical Chemistry for the Chemical and Biological Sciences</td>
</tr>
<tr>
<td>Topper</td>
<td>Ch261</td>
<td>30</td>
<td>Chemical</td>
<td>Quantum Chemistry</td>
</tr>
<tr>
<td>Travels</td>
<td>CE 121</td>
<td>25</td>
<td>Structural Engineering</td>
<td>Structural Analysis</td>
</tr>
<tr>
<td>Viola</td>
<td>CE481</td>
<td>20</td>
<td>Bridge Engineering</td>
<td>Bridge Engineering</td>
</tr>
<tr>
<td>Yulahik</td>
<td>Ma213</td>
<td>30</td>
<td>Calculus II</td>
<td>Thomas’ Calculus</td>
</tr>
<tr>
<td>Yulahik, Mintchev, Ballyn.</td>
<td>MaX11</td>
<td>100</td>
<td>Calculus I</td>
<td>Thomas’ Calculus</td>
</tr>
<tr>
<td>Wei</td>
<td>ME332</td>
<td>30</td>
<td>Manufacturing Engineering</td>
<td>Manufacturing Engineering and Technology</td>
</tr>
<tr>
<td>Wootten</td>
<td>ME440(EID440/EID440)</td>
<td>14</td>
<td>Advanced Fluids</td>
<td>Viscous Fluid Flow</td>
</tr>
<tr>
<td>Wootten</td>
<td>ESS140M</td>
<td>25</td>
<td>Fluid Mechanics and Flow Systems</td>
<td>Introduction to Fluid Mechanics</td>
</tr>
<tr>
<td>Wootten, Cumberbatch, PM</td>
<td>EID 101C</td>
<td>75</td>
<td>Engineering Design and Problem-Solving</td>
<td>Engineering Design</td>
</tr>
<tr>
<td>Yafajakos</td>
<td>CE 1341</td>
<td>20</td>
<td>Environmental System Engineering</td>
<td>Waste and Water Waste Technology</td>
</tr>
</tbody>
</table>

RECOMMENDED TEXTS

Kirtman	ECE193	30	Electrical & Computer Engg Projects	Art of Electronics	Horowitz & Hill	Cambridge Univ. Press	2
Kirtman	ECE161	30	Programming Languages	The C Programming Language	Kernighan & Ritchie	Prentice Hall	2
Luchtenberg	ME151	30	Feedback Control Systems	Feedback Control of Dynamic Systems	Franklin, Powell & Emani-Naeni	Prentice Hall	6