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Abstract

The 2016 U.S. presidential campaigns were rocked by various scandals, many

of which were ignited by fake news articles that spread like wildfire on social

media platforms like Facebook and Twitter. When it came to light that many

of these articles were purposefully constructed by foreign actors to influence the

presidential election, it became apparent that social media platforms needed more

safeguards to prevent individuals from deceiving the public for personal gain.

This study attempts to fulfill this need by building an automated system ca-

pable of detecting the malicious content published during the 2016 presidential

campaign season. Using a set of articles flagged as false by Snopes, and a set

of articles from leading news organizations, select machine learning algorithms

(k-nearest neighbors, support vector machines, and long short-term memory net-

works) are trained using only each article’s textual content. Other instances of

these models are also given the sentiment-related features of each article to take

advantage of any possible correlation between the overall sentiment of an article

and its factual accuracy. The results of this study show that a long short-term

memory network is capable of obtaining an overall accuracy and average F1-score

of 90% with this dataset.
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Chapter 1: Introduction

The practice of producing false narratives and spreading lies to inuence the masses

was seen as early as 1279 B.C.E. when Ramesses II told his people that his �rst

major excursion, only 5 years into his reign as pharaoh, against the Hittites was a

resounding success. However, the reality was that he had barely managed to make it

home alive after being duped by Hittite spies and losing a large majority of his army

in his �rst battle. As the head of the totalitarian government of Egypt, Ramesses

II was able to literally etch his false narrative into stone in an e�ort to convince

his subjects he was superior to their enemies and would build a legacy greater than

the pharaohs before him [67]. Even some of America's greatest heroes are guilty of

deceiving the public to sway public opinion, such as Benjamin Franklin who falsely

portrayed Native Americans as murderous scalping enthusiasts, working with King

George III, in order to rile up revolutionaries and gain the French's support in the

American Revolution [64].

Modern technology and higher literacy rates have made it possible for more people

to understand the world around them; thus, much of the modern populace can now

freely form their own opinions rather than faithfully accept whatever they are told.

The impact of unchecked social media proliferation has led to a new surge of informa-

tion sharing by established and freelance journalists, small digital publications, large

media conglomerates, and inexperienced, yet opinionated and inuential, individuals

who had previously never shown an interest in public service of any kind. Recent es-

timates show that over 67% of Americans get at least some of their news from social

media [62]. The inux of unregulated media vying for Americans' attention makes it

di�cult to determine whether or not the sources of information Americans now turn
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1. Introduction

to are even legitimate, let alone accurate. Furthermore, the mounting pressure many

journalists face to meet urgent deadlines or publish alerts and updates quickly, in as

little as 15 minutes, may make verifying a story for accuracy exceedingly di�cult [70].

However, the scenario that unfolded during the United States' 2016 presidential

campaign season had little to do with journalists failing to do their due diligence.

By many accounts, fake news, or stories \[intended] to deceive, often geared towards

getting clicks", spread through social media platforms like Facebook and Twitter,

enwrapping millions of Americans and inuencing their perception of the leading

contenders in the presidential race [66]. In fact, the FBI, along with other American

intelligence agencies, concluded that the Russian government was the real author

of some of the most trending fake news, including \pizzagate" [58]. More recently,

British Prime Minister Theresa May publicly denounced Russia for undermining the

West's free society by \weaponizing information" and \deploying [Russia's] state-

run media organizations to plant fake stories" [7]. Similarly, Spain accused Russia

for employing similar tactics to divide the Spanish people with disinformation [55].

Thus, the threat posed by maliciously written articles still looms on many parts of

the web and could impact upcoming democratic elections.

This study seeks to lay the foundations for developing an autonomous system

capable of �ltering out untrustworthy content, such as the material that was spread

on social media by Russian bots [61]. One property of a successful system would be

the ability to �lter out deceitful content written by repeat o�enders. For example,

Paul Horner, one of the most proli�c fake news authors, composed his work just

to showcase how gullible the public was [18]. In the past, forensic linguists have

shown that analysis of idiolects, individuals' distinctive use of language, can help to

positively identify anonymous authors, like James Madison as the author of some

disputed Federalist Papers, and Ted Kaczynski as the Unabomber and author behind
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1. Introduction

the terrorist manifesto titled An Industrial Society and Its Future [35, 57]. To that

e�ect, this study aims to train classi�ers that can use not only article content, but

also the hidden markers indicative of authors that aim to deceive their readers.

Chapter 2 of this thesis discusses the select algorithms and techniques that are

ultimately used in this study. Afterwards, an overview of the current state of the

art in discerning fact from �ction is provided in Chapter 3. Next, the results of the

various experiments using machine learning are presented in Chapter 4. Finally, this

study is concluded in Chapter 5 with an analysis of its successes and shortcomings.
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Chapter 2: Background

Feature and classi�er selection are both crucial for classi�cation using machine learn-

ing; analyzing the key properties of a dataset with the model best suited for that

domain tends to lead to better results. Classical machine learning classi�ers require

numerical values to represent observations of each class. Since the datasets in nat-

ural language processing (NLP) tasks are usually raw text, as is the case for this

research study, there must be a conscientious choice on how to accurately portray the

text numerically. Two NLP techniques to produce vectorized representations of text

documents are presented in this chapter: term frequency-inverse document frequency

score weighting, and word embeddings. This chapter also includes a section on pre-

processing techniques to re�ne the textual data, as well as a brief synopsis on the �eld

of sentiment analysis to motivate the idea that sentiment scores can be important fea-

tures for this study since they provide insight about the motivation and purpose of

a piece of text. Lastly, this chapter formally introduces the classi�er models used

in this research: k-nearest neighbors, support vector machines, and recurrent neural

networks.

2.1 Preprocessing

Real-world data is usually messy. One of the �rst steps before performing any data

analysis is to clean or re�ne the data by making the data structured and correct, and

removing any discernible noise. The preprocessing steps performed in this study fall

into the category Jurafsky and Martin call \text normalization" because the text is

being converted into a convenient and standard form [54]. The very �rst step in text
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2.2 Term Frequency-Inverse Document Frequency

processing is to tokenize the data, or separate the words. Though common practice

is to simply use whitespace and punctuation to delimit words, compound words such

as proper nouns (e.g., \White House") can lose their meaning when broken up. To

overcome this information loss, named entity recognizers can be used to prevent

splitting up these tokens.

To standardize the data, the tokens may then be converted to their roots so di�er-

ent tenses of words can be linked together. However, this task, called lemmatization,

requires that the words in each sentence are �rst tagged with their part-of-speech to

determine the root word. Since part-of-speech tagging is sometimes too computation-

ally intensive for large documents, a simpler approach called stemming is often used

in its place. Stemming aims to remove the su�xes of each word to get the root. How-

ever, the e�ectiveness of the stemmer is implementation dependent. For example, the

Porter stemmer aims to remove su�xes using pattern matching, potentially produc-

ing incoherent words or semantically incorrect words (e.g., the stem of \ties" is \ti",

and the stem of \operator" is \operate") [8]. Finally, to re�ne the text of the docu-

ment, articles, pronouns, prepositions, and other uninformative words are sometimes

�ltered out before the core analysis is performed. These uninformative words, called

stop words, usually help in information retrieval and document similarity tasks [41].

2.2 Term Frequency-Inverse Document Frequency

Once preprocessing is complete, the remaining text must be transformed into real-

valued vectors so that the text can be used by a model. One technique to produce

numerical values for words in a document is to represent each word by its term

frequency-inverse document frequency score. The term frequency-inverse document

frequency (tf-idf) of a word is used to quantify the importance of a word in a corpus
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2.3 Word Embeddings

based on how frequently the word shows up in a document and how many other

documents also contain the word [37].

tf-idf w;di ;D = (
cw

jdi j
) � log(

jD j
1 + jd 2 D : w 2 dj

) (2.1)

A basic tf-idf scoring function is available in Eq. 2.1. The �rst term represents the

term frequency (tf) of the wordw, which is the ratio of the number of occurrences of

the word (cw) to the total number of words in the document (jdi j). The second term

is the inverse document frequency (idf) which serves to boost rarer, more informative

words, and diminish the impact of frequently used non-informative words, like articles

and pronouns. Since the idf is computed by taking the logarithm of the total number

of documents in the corpus (jD j) divided by the number of documents with the word

o�set by 1 to avoid 0 denominators (1 + jd 2 D : w 2 dj), words that appear in

almost all the documents will have a idf close to 0. On the other hand, words that

appear in only select documents will have larger idf values, thereby increasing their

tf-idf weights.

2.3 Word Embeddings

Another way to numerically represent a text is to use a word embedding model to

transform each word into a real-valued vector. The word embedding of a word is the

high-dimensional vector that is the result of mapping the word with a parameterized

function that was developed using a large corpus that is representative of the source

language. One of the primary bene�ts of using word embeddings is that similar words

will tend to map to the same region. t-distributed stochastic neighbor embedding (t-

SNE) is a probabilistic technique designed for dimensionality reduction, and can be

used to visualize high-dimensional datasets like word embeddings [38]. The t-SNE
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2.3 Word Embeddings

Figure 2.1 t-SNE visualization of word embeddings [48]
Left: the number region in a word embedding model

Right: the occupations region

algorithm converts similarities between data points into joint probabilities and tries to

minimize the divergence between these joint probabilities and the high-dimensional

data [17, 22]. Due to the reduction in dimensionality, mainly for the purposes of

visualization, the axes and its units on t-SNE plots do not have any real meaning;

however, the t-SNE still meaningfully shows which of the points are closer together in

the original feature space [49]. An example of the bene�t is shown in Fig. 2.1 which

shows zoomed-in views on the number and jobs regions of a t-SNE visual constructed

using word embeddings.

The word embedding model used in this study is the GloVe model that was trained

by a team of Stanford researchers using global word-to-word co-occurrence statistics.

This vector representation model proves to be highly e�ective at grouping together

similar or related words in higher dimensions. Furthermore, the model was designed

in way such that vector di�erences between two words' word embeddings capture \the

meaning speci�ed by the juxtaposition of two words" [42]. For example, the concep-

tual di�erence between \short", \shorter", and \shortest" is similar to the di�erence

between \slow", \slower", and \slowest". Using the underlying words' GloVe word

embedding vectors, this conceptual di�erence is mirrored by vector di�erences in the
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2.4 Sentiment Analysis

Figure 2.2 t-SNE visual of GloVe word embeddings for select comparative and
superlative words [44]

t-SNE plot in Fig. 2.2.

2.4 Sentiment Analysis

One common text categorization task is sentiment analysis, which is the identi�cation

of sentiment-related features such as the author's positive or negative orientation

towards the subject of the text. Closely related is opinion mining which relates to

the extraction and analysis of opinion about entities. In most literature, and in

this paper, the two terms are used interchangeably since the two tasks have become

synonymous with each other [25]. Texts such as movie, book, or product reviews,

are clear examples of authors expressing their opinions, and sentiments, towards the

product. Similarly, editorials and political texts express the author's sentiment toward

the political candidate or the political action that is the subject of the text [29].

Sentiment analysis can be performed at varying granularities: document-level,

sentence-level, and aspect-level. As the terminology hints, document- and sentence-
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2.5 K -Nearest Neighbors

level sentiment analysis aim to classify the sentiment of the text using the whole

document as a singular unit. By classifying constituent sentences, a heuristic can

be applied using these lower-level results. On the other hand, aspect-level sentiment

analysis aims to classify sentiment with respect to particular entities, such as parts

of a products or distinct characteristics of a person [25].

The potential, and observed, applications of sentiment analysis include product

opinion gathering and monitoring, bias detection, automated recommendation en-

gines, and even question answering and automated summarization [56]. Tasks such

as product reception, review analysis, and suggesting other products to users based on

their reviews are textbook examples of document- and sentence-level sentiment anal-

ysis. E�ective question answering systems need to be able to discern the aspect with

which questions are asked; that is, whether not the question is purely fact-oriented,

or is inherently opinionated and, thus, seeks an opinion-oriented response. Similarly,

summarization bene�ts from understanding the viewpoints of the text to provide a

more cohesive output.

2.5 K -Nearest Neighbors

The k-nearest neighbors (KNN) algorithm is a decision-boundary based classi�cation

algorithm that classi�es an input to the majority class of its k nearest neighbors in

space [39]. The tunable hyperparameters for this algorithm includek, the number

of neighbors used for classifying any given input, and the distance metric used for

determining the closest neighbors. The least robust KNN is thought to bek = 1

because this model runs the risk of becoming heavily reliant on noise or outliers.

Variants of KNN may weigh the votes of training set observations with their cosine

similarity relative to their input, as shown in Eq. 2.2.
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2.5 K -Nearest Neighbors

score(c; d) =
X

d02 Sk (d)

(I c(d0) � cos(v(d0); v(d)) (2.2)

In this scoring weighting scheme,Sk(d) is the set of d's k nearest neighbors and

I c(d0) is the indicator function which equals 1 if and only if the observationd0 is part

of classc, otherwise 0 [39].

The advantages of KNN as a classi�cation algorithm for practical applications

are numerous. As a non-parametric learning algorithm, KNN requires no assumption

on the underlying distribution of the input data. For applications in natural lan-

guage processing, speci�cally classi�cation of news articles as genuine or maliciously

authored for political gain, there is not enough substantial evidence to map the ar-

ticles' text to a closed form probabilistic distribution. Furthermore, since KNN is

an instance-based algorithm, the only \learning" required is to load the observations

into memory, which signi�cantly reduces training time [69].

As with any machine learning algorithm, KNN also has some drawbacks. Test-

ing inputs with KNN requires all of the training set to be in memory, or available

through some highly performant data store, like a database, so vectorized inputs can

be compared with every training point to determine thek nearest neighbors. How-

ever, because our dataset is not too large, this limitation is not a burden for our task.

Another downside to KNN is the time cost for testing: for each individual input,

every training point must be checked to see if it is one of thek nearest neighbors,

and if so, use its label for classi�cation. As it turns out, even this limitation does not

severely impact testing performance due to the size of the dataset; thus, a trained

KNN model is highly performant and can be used for real-time classi�cation [69].

10



2.6 Support Vector Machines

2.6 Support Vector Machines

The support vector machine (SVM) classi�er is a high performing machine learning

algorithm that relies on the relatively simple concept of dividing the data into distinct

regions. For example, in binary classi�cation, SVMs seek to maximize the distance

between the data points of opposing classes and the dividing decision boundary. The

decision boundary, also known as the hyperplane, is formulated as a linear combi-

nation of weights on each dimension of the input, as shown in Eq. 2.3.w is the

vector of weights applied to inputx, a support vector, whose length corresponds to

the dimensionality of x, and b is the bias, a constant o�set.

wT x + b= 0 (2.3)

The data points closest to the hyperplane are called the support vectors, and the

shortest distance between these points and the boundary is called the margin. By

maximizing the margin, the probability for misclassi�cation due to noise is reduced,

assuming that the testing data points come from the same distribution as the training

data. One clear advantage of using SVMs is the low memory cost: only these support

vectors need to be held in memory; the other data points, which are farther away

from the hyperplane, no longer need to be considered (recall that the KNN algorithm

requires every input be compared with every training observation to determine the

most likely class) [40].

However, in most practical applications, the data cannot directly be separated

into 2 well-de�ned regions, especially for complex datasets with a lot of overlap in

the original feature space. In these instances, it may be possible to map the feature

space into a higher dimension where the classes are more easily separable. However,

this mapping may be too complex and computationally intensive to apply to large
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2.6 Support Vector Machines

training sets [23]. This computational complexity can be avoided altogether by using

symmetric kernel functions on the pair of vectors, which results in a similarity score

that is exactly equivalent to the dot product of its inputs when mapped into a higher

dimensional space without having to explicitly map the vectors and computing their

dot product, as shown in Eq. 2.4 [6].

K (x; x0) = � (x)T � � (x0) = � (x0)T � � (x) = K (x0; x) (2.4)

One example use-case for this higher-order mapping is when the classes' data

points are radially dependent. As shown in Fig. 2.3, the data can be mapped toR3

using the mapping function in Eq. 2.5.

z2 = x2 + y2 (2.5)

Figure 2.3 Visualizing 2-dimensional observations from two radially dependent
distributions [33]

Left: 2-D plot of the dataset wherex is the X-Label andy is the Y-Label
Right: Dataset is mapped intoR3 wherez is the radius from the origin

The analogous radial basis function (RBF) kernel, also known as the Gaussian

kernel, is show in Eq. 2.6 [5]:

12



2.7 Neural Networks

K (x; x0) = exp(�  � jj x � x0jj 2) (2.6)

2.7 Neural Networks

One of the most popular models that can be found in a modern-day machine learning

engineer's toolkit is a neural network. Though they are at the forefront of many

modern advances and innovations in arti�cial intelligence, they are far from new.

The idea of an arti�cial neuron dates as far back to 1943 when McCulloch and Pitts

used their knowledge of neurology to devise their mathematical neuron that emulated

simple neurons that acted in a binary fashion by �ring when the sum of their inputs

surpassed some internal threshold [34]. This simple neuron from 1943 is the founda-

tion for the basic unit now known as a perceptron: a node with various inputs that

are summed together to produce a binary result. A perceptron (shown in Fig. 2.4)

on its own is the simplest, single-layer neural network, and the weighted sum of its

inputs models a linear classi�er that can be used for binary classi�cation. In fact, the

optimal values for each weight is learned during training just as the weights and bias

are learned for a linear classi�er.

Figure 2.4 A perceptron with three inputs: x1; x2; x3 [46]

13



2.7 Neural Networks

Another key parameter when training a perceptron is its activation function, the

input dependent function that decides whether or not the perceptron �res, that is,

whether its output is 0 or 1. In fact, if the simple perceptron emulates a linear classi�er

with the form in Eq. 2.3, the perceptron's activation function is the Heaviside function

(aka step function) since it classi�es input vectors as class 0 on negative values and

class 1 on positive values. This classi�er is also known as the simplest arti�cial neural

network (ANN or NN) because it is a single layer of perceptrons: the weighted inputs

are fed directly to the outputs. To build more a complex model capable of making

more complex decisions, layers of perceptrons are combined to create a network of

nodes. Such networks have historically been called multi-layer perceptrons (MLPs),

even though modern networks are usually composed of neurons with other activation

functions like the sigmoid, tanh, and recti�ed linear unit (ReLU) functions, which are

shown in Fig. 2.5 [30].

Figure 2.5 Common activation functions for arti�cial neurons [68]

14



2.8 Recurrent Neural Networks

The layers that provide the interface between the input and output nodes are

called hidden layers. In typical feedforward networks, the layers of the network are

fully connected, and unidirectional. Thus, the information is strictly moving forward

from the input towards the output and there are no cycles or loops. Typical training of

neural networks involves choosing the optimal architecture for the application, which

in turn implies choosing the number of hidden layers, and number of nodes in each

hidden layer. The weights of the links between nodes are usually initialized to random

values, and then trained with a technique called backpropagation. Using the chosen

loss function that penalizes misclassi�cations, the delta, or the di�erence between

the model output and true value, of each training iteration is propagated backwards

through the network to incrementally update the weights in order to minimize the loss

function. The learning rate of the model dictates at what pace the weights will follow

the direction of the delta. High learning rates will cause the model to take large steps

in the direction of the delta, possibly overshooting the minimum and requiring extra

iterations; on the other hand, smaller learning rates may lead to slower or incomplete

training since many more iterations may be required to reach the minimum loss [30].

2.8 Recurrent Neural Networks

Another class of neural networks showing great promise in the NLP domain is the

recurrent network. In contrast to feedforward networks, recurrent neural networks

(RNNs) have directed cycles. The primary advantage that cycles provide to RNNs is

the ability to \[remember] information about what has been calculated so far" since

each internal state is dependent on all of the previous computations and states leading

up that state [9].

The cycle in the RNN also allows the RNN to continuously transition between
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2.8 Recurrent Neural Networks

internal states for the entire length of the input sequence. Thus, while basic feedfor-

ward neural networks have strict dimensional requirements for their input and output

vectors, RNNs are able to dynamically operate on sequences of vectors [31]. For ex-

ample, if the input sequence is a sentence with 5 words, the unrolled network would

have 5 layers. Fig. 2.6 shows an RNN that unfolds into t+1 layers, where each layer

(A ) represents an internal state that was computed using the previous state and the

next available piece of the input sequence (x t ). Note that an activation function can

also be applied at each internal state to produce an output (h t ).

Figure 2.6 An RNN unrolled into a neural network with t+1 layers [53]

Some applications for which RNNs have proven useful include speech transcrip-

tion, machine translation (translating one language to another), video frame classi�-

cation, and image captioning [31]. These applications all require the RNNs' stateful

transitioning while processing the sequence of input; for example, producing a valid

translation greatly depends on the part of sentence previously translated. Further-

more, RNNs have also proven themselves to be highly performant in the absence of

sequential input, as was the case in DeepMind's RNN that transcribed house numbers

from Google Street View [3].

As shown by Fig. 2.7, RNNs can be used in a variety of settings. The left-most

setup (\one to one") demonstrates the transformation that occurs in typical neural

networks: the input vector is processed completely by all of the hidden layers and
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2.8 Recurrent Neural Networks

Figure 2.7 The various use-cases for RNNs (green blocks) using input vectors
(red) to produce output (blue) [32]

then mapped to an output vector. The \one to many" setup shows a transformation

that may occur in settings like image captioning where a �x-sized image is trans-

formed into a sequence of words. The next setup, \many to one", illustrates how a

sequential input is processed to produce a single label, which could be applied towards

applications like sentiment classi�cation. The �rst \many to many" setup exempli�es

the transformation that sentences could undergo in machine translation applications:

input sequences are mapped to the target language using local context as opposed

directly mapping each word independently. Lastly, the second \many to many" con-

�guration depicts a scenario in which an output is required for each constituent of the

input sequence, e.g., a video classi�cation task that requires labelling each frame [32].

However, there is a aw with conventional RNNs. The current state of an RNN,

though dependent on previous parts of the input sequence, may be too far removed

from the state at which a relevant piece of information was introduced. For example,

in the input sentence \I grew up in France... I speak uent [language]", the RNN may

not be able to predict \French" as the language since the word \France" occurred

a lot earlier than where that information was actually necessary. This gap between

the necessary information and the point at which that information is actually needed

may ultimately become too large for the RNN to be e�ective [50]. However, there
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is a special variant of the RNN, the long short-term memory (LSTM) network, that

can overcome this limitation.

LSTMs are RNNs with special memory units (also known as cells) that can selec-

tively keep information for an extended period of time [11]. Instead of only consisting

of a single repeating layer, as is the case with an RNN, the vanilla LSTM has one

memory unit composed of four special layers: three sigmoid layers, and one tanh

layer [50]. All sigmoid layers output values between 0 and 1, and the tanh layer out-

puts values between -1 and 1. Together, these layers help the cell forget, remember,

update, and produce information.

Figure 2.8 Unrolled RNN and LSTM chains
Top: RNN with a single layer in each state [51]

Bottom: LSTM with one memory unit in each state [52]
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As shown in the LSTM in Fig. 2.8, the �rst layer is a sigmoid layer whose input

is the concatenation of the output from the previous state (h t-1 ) and the current

input ( x t ). In LSTMs, sigmoid layers that are joined with pointwise multiplication

operators act as gates that let information through whenever their outputs are non-

zero values. The �rst sigmoid layer usesh t-1 and x t and forms a gate on the incoming

stream of values from the previous cell state (the top left corner of each cell in Fig.

2.8). This gate, often called the \forget gate", outputs a number between 0 and 1 for

each value in the previous state. Thus, if the gate outputs 0 for a particular value,

that value is completely forgotten.

The next stage of the cell decides how much of the new information (h t-1 and x t )

will be retained in the state. First, a tanh layer is used to compute an updated value

for each bit of new information. Afterwards, these updated values are �ltered by

another gate in order to extract whatever is deemed pertinent by the LSTM. Finally,

the �ltered information is added with whatever information from the previous state

that was not forgotten to form the new cell state.

The last stage of the cell computes the output for the current state (h t ). The

�rst step in this stage is to map the cell state into the acceptable output space. In

Fig. 2.8, the tanh activation function is applied to the cell state to push each value

between -1 and 1. The transformed state is then passed through the �nal sigmoid

gate; thus, the output consists of only the parts of the cell state the LSTM deems

appropriate. For example, in a machine translation setting, the LSTM may output

whether or not the subject is singular or plural, so the LSTM knows how to conjugate

the following verb if that is in fact the following input [50].

There are other LSTM con�gurations, and each has its own advantages in certain

settings. However, a recent study shows that most of these variations do not perform

signi�cantly better than the vanilla LSTM [24]. The LSTM model used in this thesis
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is a variant of the vanilla LSTM model that has a con�gurable number of memory

units [74]. Note that the LSTM presented in this section only had a single memory

unit, and, thus, produced a single output. Adding extra memory units increases the

dimensionality of the output at each state. Thus, if the LSTM contains 50 memory

units in each layer, the LSTM will ultimately produce a 50-dimensional output vector

after processing the entire input sequence. Since the challenge presented in this thesis

is a binary classi�cation task, the outputs of each LSTM are passed through another

sigmoid activation layer to produce a prediction.
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Chapter 3: Related Work

The current approaches to validating news and facts and �ltering out unreliable con-

tent are currently limited, but there is a good foundation for future systems to build

on. These approaches either attempt to verify content independently, or use prior

knowledge and biases to block out suspicious sources completely, usually after user

complaints. For example, organizations like Snopes and PolitiFact employ profes-

sionals to verify claims manually, and universities usually post guidelines for their

students on how to recognize trustworthy sources of information. Even Facebook

turned to third-party fact-checking organizations, including Snopes and PolitiFact,

to ag disputed stories in an attempt to stem the tide of a viral fake news story [36].

However, given the speed at which sensational news travels, waiting on journalists to

perform thorough research is not entirely feasible and the reader must do their own

due diligence.

3.1 Manual Fact Checking and Source Validation

Snopes and PolitiFact are two prominent and well-respected fact checking organiza-

tions that regularly post fact checks on controversial issues. Snopes.com is a com-

pletely independent and self-su�cient website that was launched in 1994 by David

Mikkelson to host his research on the prevalent urban legends of his time. Since

then, Snopes has since grown into a resource that many people, including journal-

ists, rely on for credible information [76]. PolitiFact is much more recent product

and focuses primarily on fact-checking elected o�cials and others in the public eye

who speak about politics. PolitiFact is run by editors and reporters from theTampa
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Bay Times, an independent newspaper, and is owned by the non-for-pro�t Poynter

Institute, a school for journalism in Florida [1]. Though both organizations share a

similar mission of informing their readers, PolitiFact chooses to only analyze the most

newsworthy political claims while Snopes chooses whichever topics their readers are

most interested in at any given time.

For a more immediate sense on the veracity of an article, readers can either dig

into the claims made in the article themselves, or use basic guidelines to be decide

how wary or suspicious they should be of the publishing source. One relevant re-

source cited by Harvard Library's Research Guides is OpenSources.co, an ongoing

project that retains an updated registry of misleading and fake news [73]. Led by

Dr. Melissa Zimdars at Merrimack College, the OpenSources team analyzes each

source to determine the lack of transparency, level of inaccuracy, extreme bias, and

other indications of purposeful misinformation. Some of the labels they use to tag

untrustworthy sources are \fake" for sources that fabricate stories, \bias" for sources

that have an extreme political view and often decontextualize information, \hate"

for sources that actively promote racism, misogyny, homophobia and other forms of

discrimination. The labels they use to tag potentially trustworthy sources are \po-

litical" for sources that provide veri�able information for certain political views, and

\reliable" for sources that post information \in a manner consistent with traditional

and ethical practices in journalism" [75].

OpenSources' steps for labelling include analysis of the title and domain, pub-

lishing author and sources cited (if any), writing style, aesthetics of the web page,

and the source's social media presence. For example, if the title or domain seems

like an imitation of a more prominent news authority, or the web page seems like a

misshapen blog, it is highly likely that the website is not a credible source of reliable

information. Furthermore, if the writing style seems inconsistent, is grammatically
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incorrect, or contains a lot of capital words with exclamation marks, the article may

be clickbait and purposefully incendiary to invoke extreme feelings in the reader [75].

For an automated system to emulate the manual process that OpenSources con-

tributors use for source tagging, the system would need to detect all the red ags

a human would look out for. However, since some of these markers are not easily

quanti�able, this logic is not very formulaic and hinges on the discretion of the arbi-

trator, whether human or machine. To overcome possible ambiguities, some systems,

like browser extensions, just blacklist whole domains. Other systems, like the one

introduced in the following section, iteratively learns whether or not a source should

be trusted.

3.2 Knowledge Fusion

In 2014, a research team at Google attempted to build a system capable of discerning

truth from an aggregate of information scraped o� of the web [20]. They structured

their study to tackle their newfound problem of identifying the probability that a

scraped subject-predicate-object triple of information is actually true. This challenge,

which they called the knowledge fusion problem, builds on the data fusion problem

which is the challenge of identifying the true values of data given a pool of conicting

information (e.g., determining President Obama's birthplace from a set of possible

places extracted from di�erent in articles, blogs, and editorials). The motivation for

the knowledge fusion problem is to use these true-labelled triples to build a web-scale

knowledge base for fast and reliable information retrieval, similar to the knowledge

graph used by the Google search engine.

Classical approaches to the data fusion problem predominantly determined truth

values in accordance with either a voting scheme, rule-based system, a trustworthiness
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metric for quality-based labelling, or a source relationship-based method [16]. The

early rule-based systems updated truth values by mirroring the most recent source's

value, or taking minimums, maximums, or averages for numerical values. Quality-

based approaches either rely on external metrics like page ranks and similarity scores,

or compute likelihoods of correctness for the data. The relation-based approaches try

to establish links between sources by either attributing derivative sources with lower

weights, or clustering sources into subsets to act as supporting evidence for particular

data values.

The authors of \From Data Fusion to Knowledge Fusion" [20] experimented with

adaptations to three data fusion techniques. The �rst technique was a simple vote-

based algorithm called VOTE that served as their baseline. The other two techniques

were statistical algorithms that learned sources' trustworthiness using the source's

historical accuracy rate. The trustworthiness of each source was then used to model

the data values as a posterior distribution conditioned on the distribution of the data.

In each posterior distribution, the trustworthiness of the source serves as the likelihood

of the value, and the distribution of the values serves as the prior probability [19].

In the �rst statistical technique, called ACCU, a simplifying assumption is made

that greatly reduces the complexity of the determining the prior probability; speci�-

cally, there are a constant number of uniformly distributed false values. In contrast,

the second technique, called POPACCU, derives the prior probability distribution of

values using the observed data. The authors chose POPACCU because it is more

robust than ACCU in scenarios where sources copy each other [19]. With enough

false copycat sources, the distribution of false values becomes quite skewed and far

from uniform. To tackle the knowledge fusion problem, these data fusion techniques

are modi�ed to produce truthfulness probabilities as opposed to binary output: the

ACCU techniques are modi�ed to output their posterior probability, and the voting-
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based approach is modi�ed to output the proportion of sources that agreed with the

most popular value.

To evaluate their techniques, they use veri�ed triples on Freebase, an open database

of world knowledge [71], as their gold standard. Triples of subject-predicate-object

form (s-p-o) contained in Freebase are considered as always true, and s-p-o triples

that are not in Freebase as a complete triple, but are seen as s-p pairs, are labelled

false under the local closed-world assumption (LCWA). In a closed-world system, all

information is known by the system; however, in a LCWA system, the system only

has complete knowledge about any local knowledge it contains. Thus, if Freebase has

knowledge of a particular data item (the s-p pair), under the LCWA assumption it

has complete knowledge about that topic and so any triple formed using that subject-

predicate is untrue if the triple is not already contained in Freebase. Triples made

of subject-predicate pairs that are not present in Freebase are ambiguous are simply

excluded from the experiment [20].

To numerically evaluate the performance of each technique, a precision versus

recall plot is constructed. The precision and recall are recorded as each new triple is

extracted from a data source, and the area under this precision versus recall curve

(AUC-PR) is used to describe the performance of each technique. The results of

their study show that the ACCU models have a better AUC-PR than VOTE. The

results also show that the VOTE technique usually underestimates the probability

of true values. That is, in scenarios where there are very few sources of data values,

or none of the sources agree on any particular value, the con�dence, or prediction

probability, of the predicted value is quite low for VOTE. This result stems from the

fact that the VOTE technique does not learn to designate sources as trustworthy,

and so when there are very few corroborating triples, VOTE has a low prediction

con�dence. It turns out that ACCU has the highest AUC-PR, but slightly higher
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deviation between real probability and prediction probability as triples are iteratively

added into consideration.

The results of this paper show that it is possible to make a fact-assessing system

with high precision-recall if the system has immediate access to enough data from

trustworthy sources. However, this luxury is not available to any system that would

wish to moderate news articles in realtime. While the system in this study is far

better solution than blacklisting whole domains, it may still develop a bias and exces-

sively �lter out articles. For example, the system may be unfair to newer authors at

organizations that have developed untrustworthy priors due to a few select publica-

tions. This system may even unfairly block content from newer, unrecognized sources

when they report breaking news that has not yet been corroborated.

Today, readers have almost a limitless number of sources for information - building

a system that remembers the trustworthiness of each source, or tries to determine the

source's trustworthiness based information previously published, if any, is infeasible.

A more feasible approach does not try to determine whether or not data is true, but

instead tries to determine if the data is probably untrue based on how it is presented.
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Chapter 4: Experimental Setup

and Evaluation

4.1 Dataset Construction

In order to test the e�ectiveness of the machine learning algorithms and natural

language processing techniques discussed in Chapter 2, we constructed a corpus of

malicious and credible articles. The malicious articles used in our dataset were all

stories that had trended on social media that Snopes eventually investigated and

labelled false. A list of URLs to these articles was later compiled by Allcott and

Gentzkow for their study on the impact of fake news on the 2016 presidential election

[2]. After Dr. Gentzkow and his research assistant, Chuan Yu, provided us with this

list, we designed a script to scrape the content of the article on each web page. Of

the 948 fake news URLs, just 478 articles that had gone live between January and

December 2016 were still available at the start of this study (March 2017).

To compile a list of URLs to credible articles, we used the Google News search

engine to query for news articles published by major news organizations. In order to

ensure that all the credible articles would be similar to the set of articles available

during the campaign season, a few �lters were applied to each query. First, the key-

words \trump", \clinton", and \election" were conjoined together with OR operators

in each query to only capture articles related to the 2016 presidential election. Next,

a date range restriction from January 1, 2016 to December 1, 2016 was imposed on

the query in ensure that the timespan of the credible corpus would be similar to that

of the malicious corpus. Finally, a Google News source �lter was applied to the query
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